影響上市公司高管薪酬的企業(yè)因素實(shí)證分析
影響上市公司高管薪酬的
企業(yè)因素實(shí)證分析
影響上市公司高管薪酬的
企業(yè)因素實(shí)證分析
摘要:本文主要通過分析可能影響上市公司高管薪酬的企業(yè)因素(排除了個(gè)人因素的不確定性與難統(tǒng)計(jì)性),尋找出多個(gè)符合經(jīng)濟(jì)意義的變量,通過應(yīng)用eviews這類專業(yè)的統(tǒng)計(jì)軟件,對(duì)所收集的深交所385個(gè)可用樣本進(jìn)行了一系列的描述統(tǒng)計(jì)以及回歸分析、調(diào)整,最終確定了決定高管薪酬的幾個(gè)主要因素,并且得到了一個(gè)擬合度較高的預(yù)測方程,以用于高管薪酬的預(yù)測。
關(guān)鍵詞:高管薪酬 多因素分析 模型 計(jì)量經(jīng)濟(jì)學(xué) 檢驗(yàn)
一、問題的提出
在股份公司里,人們?cè)谂μ岣吖窘?jīng)濟(jì)效益的同時(shí),也越來越來關(guān)注委托代理問題。因?yàn)槲覀円岩庾R(shí)到如果委托代理關(guān)系處理不好,可能帶來道德風(fēng)險(xiǎn)、逆向選擇等諸多問題,而要解決委托代理問題,重要的一點(diǎn)是如何提高受托人經(jīng)營的積極性。在西方,高級(jí)管理人員的薪酬與公司績效的關(guān)系是企業(yè)管理體現(xiàn)激勵(lì)與約束機(jī)制和解決委托代理問題的通行做法,那么在中國這種環(huán)境下是不是也是公司績效影響到高管的薪酬呢?
Hall和Liebman在1998年利用美國上百家商業(yè)公司近15年的數(shù)據(jù),研究經(jīng)營者報(bào)酬與經(jīng)營業(yè)績之間的關(guān)系,得出經(jīng)營者報(bào)酬與經(jīng)營業(yè)績具有強(qiáng)相關(guān)的特征結(jié)論。李增泉的《激勵(lì)機(jī)制與企業(yè)績效——一項(xiàng)基于上市公司的實(shí)證研究》(2000)中研究發(fā)現(xiàn)經(jīng)營者年度報(bào)酬與企業(yè)績效并不相關(guān),而是與企業(yè)的規(guī)模密切相關(guān),并表現(xiàn)出明顯的地區(qū)差異性。諶新民、劉善敏的《上市公司經(jīng)營者報(bào)酬結(jié)構(gòu)性差異的實(shí)證研究》(2003)研究發(fā)現(xiàn)經(jīng)營者的年度貨幣性薪酬與公司績效不具有統(tǒng)計(jì)上的顯著性相關(guān)關(guān)系。楊漢明的《高管薪酬與上市公司績效的實(shí)證分析》(2004)指出高管平均薪酬的對(duì)數(shù)與上一年公司國有股持股比例及公司總股本的對(duì)數(shù)(公司規(guī)模)之間呈多元線性關(guān)系。李興緒、揚(yáng)燕紅、章玲和鄭樹明的《國有控股上市公司經(jīng)營者薪酬安排的實(shí)證研究》則詳細(xì)的對(duì)國有絕對(duì)控股的公司經(jīng)營者的年度貨幣性薪酬與公司績效進(jìn)行具體的研究。研究認(rèn)為經(jīng)營者年薪與公司績效具有統(tǒng)計(jì)上的弱相關(guān)關(guān)系。但國有控股公司經(jīng)營者年薪與滯后一期的公司績效的相關(guān)強(qiáng)度小于當(dāng)期和未來一期的公司績效的相關(guān)強(qiáng)度)。經(jīng)營者薪酬、薪酬差距對(duì)未來公司績效具有激勵(lì)作用。
所以我們的研究將建立在對(duì)過去研究的完善與創(chuàng)新上:①對(duì)于整個(gè)上市公司而言,選擇添加了滯后一期的數(shù)據(jù)進(jìn)行因素分析②添加了行業(yè)、地區(qū)這類虛擬變量③選取樣本時(shí)剔除了董事兼高管的公司
二、經(jīng)濟(jì)意義的闡述與基本關(guān)系假設(shè)
1、高管當(dāng)年薪酬與前一年薪酬存在正相關(guān)關(guān)系。因?yàn)椋吖苄匠甑拇_定通常需要參照上市公司上年薪酬水平。
2、高管薪酬與經(jīng)營業(yè)績(扣除非經(jīng)營性損益的凈利潤為基礎(chǔ)計(jì)算的凈資產(chǎn)收益率/加權(quán))存在正相關(guān)關(guān)系。根據(jù)委托代理理論,當(dāng)股東與經(jīng)理之間存在信息不對(duì)稱、利益沖突時(shí),股東會(huì)與經(jīng)理簽訂報(bào)酬——績效契約,來減少由于信息不對(duì)稱和逆向選擇所導(dǎo)致的代理成本;在報(bào)酬——績效契約下,高管階層的報(bào)酬將由企業(yè)的經(jīng)營績效確定,所以,我們假設(shè)高管薪酬與企業(yè)績效存在顯著的正相關(guān)關(guān)系。
3、高管薪酬與總股本存在正相關(guān)關(guān)系?偣杀痉从沉斯疽(guī)模的大小,在盈利的企業(yè)里,公司規(guī)模越大所獲利潤越多,高管薪酬越多。因此,我們假設(shè)高管年薪與總股本存在正相關(guān)關(guān)系。
4、高管薪酬與國有股權(quán)比例存在負(fù)相關(guān)關(guān)系。由于國有產(chǎn)權(quán)模糊,高管階層的預(yù)期期望低,難以產(chǎn)生應(yīng)有的激勵(lì)效果。所以,我們假設(shè)高管薪酬與公司股本中國有股的比例存在負(fù)相關(guān)關(guān)系。
5、上市公司同時(shí)發(fā)行B股或H股,會(huì)提高高管薪酬。當(dāng)公司能發(fā)行B股或H股時(shí),企業(yè)的融資渠道更寬廣,資金更雄厚,投資規(guī)模將更大。同時(shí),市場對(duì)于上市公司的監(jiān)管更嚴(yán)格更全面,要求企業(yè)家有更好的業(yè)績表現(xiàn),相應(yīng)的也不吝于給出高薪報(bào)酬。
6、上市公司所處的地區(qū)會(huì)影響高管的薪酬。當(dāng)公司處于上海、北京、廣東等地,因?yàn)檫@些地區(qū)本身消費(fèi)水平就很高,所以高管薪酬也相應(yīng)會(huì)提高。因此,我們假設(shè)公司是否處于以上較為繁華的城市將對(duì)高管年薪產(chǎn)生影響。
7、上市公司所在行業(yè)影響高管的薪酬。當(dāng)公司處于當(dāng)今社會(huì)盈利能力很強(qiáng)的行業(yè)(如金融保險(xiǎn)、壟斷性行業(yè)等)時(shí),公司盈利能力越強(qiáng)高管薪酬越高。同時(shí)認(rèn)為綜合類的上市公司(通常認(rèn)為是集團(tuán)類企業(yè))由于其主營業(yè)務(wù)多樣,而應(yīng)具有更好的盈利能力及抗風(fēng)險(xiǎn)能力,因而高管薪酬應(yīng)較高。因此,我們假設(shè)公司所在行業(yè)會(huì)影響高管的薪酬。
三、理論數(shù)學(xué)模型的設(shè)定
根據(jù)以上的經(jīng)濟(jì)理論的分析和基本關(guān)系的假設(shè),在設(shè)立模型時(shí)將03年高管薪酬作為滯后一期的變量,將經(jīng)營業(yè)績、總股本和國有比例作為解釋變量,將是否發(fā)行B股或H股、所在地區(qū)和所處行業(yè)作為虛擬變量。由于幾個(gè)變量之間數(shù)量級(jí)存在差異,若直接回歸會(huì)存在一些潛在問題,為了回避這一 問題,本文在設(shè)定模型時(shí)將03年高管薪酬、04年高管薪酬和總股本這幾個(gè)以絕對(duì)值形式出現(xiàn)采用了對(duì)數(shù)形式。
模型設(shè)定如下[注:文中回歸時(shí)使用ly04代替,ly03代替,lx2代替。
]:
——04年高管薪酬
——經(jīng)營業(yè)績(扣除非經(jīng)營性損益的凈利潤為基礎(chǔ)計(jì)算的凈資產(chǎn)收益率/加權(quán))
——總股本
——國有股比例
u——隨機(jī)擾動(dòng)項(xiàng)
——參數(shù)
四、樣本的選取
我們以2004年在深圳證券交易所公布年報(bào)的上市公司為樣本,并且為了保證分析結(jié)論的普遍性,我們遵循以下原則選取,共得到385 組樣本數(shù)據(jù):
為了得到更為成熟的信息,而且考慮到樣本的一般代表性,我們首先剔除了資料不全、業(yè)績較差的ST和PT 公司;
由于我國一些公司是經(jīng)過包裝上市的,這樣新上市的公司業(yè)績不穩(wěn)定,所以,樣本中未包含新上市公司,都是2003年前就上市了的公司;
因?yàn)樵诒疚闹形覀冇懻摰氖俏写黻P(guān)系,所以剔除了董事兼高管的公司;
由于我們采用的是最前三位高管薪酬總額,所以,還剔除了高管人數(shù)少于3個(gè)的公司樣本。
因?yàn)橐话愣,投資人在年終才會(huì)評(píng)價(jià)經(jīng)營者完成受托責(zé)任的情況, 以決定是否增加經(jīng)營者的薪酬,是否繼續(xù)聘用經(jīng)營者, 所以我們認(rèn)為,影響上市公司高管階層年薪的應(yīng)該是上年的公司業(yè)績和相關(guān)因素。所以,在遵循以上原則基礎(chǔ)上,我們選取披露了2004年和2003年前三高管薪酬位總額的所有公司,對(duì)應(yīng)的選擇2003 年的業(yè)績、國有股比例、總股本、絕對(duì)薪酬差等相關(guān)數(shù)據(jù)及資料。
五、樣本分析
(一)描述統(tǒng)計(jì)分析
在進(jìn)行回歸分析之前,我們先進(jìn)行以下描述統(tǒng)計(jì)分析:
高管薪酬差距較大。
在385個(gè)樣本中,04年高管薪酬最高的是000002深萬科A,廣東,所屬行業(yè)J(房地產(chǎn)),前三位高管平均薪酬為171.67萬,04年高管薪酬最低的是000426富龍熱力,內(nèi)蒙古,所屬行業(yè)D(電力、煤氣及水的生產(chǎn)和供應(yīng)),前三位高管平均薪酬為1.14萬。由此可以看出,不同公司高管薪酬差距較大,最高的是最低的150倍。
表1:
單位:萬元 股票代碼 04年薪酬 股票代碼 03年薪酬
max 000002 171.6667 000921 140
min 000426 1.143333 000426 1.143333
average 20.66513 17.0252
2、同上年相比,不同上市公司間高管薪酬差距擴(kuò)大。
同樣本情況下,03年高管薪酬最高的是000921科龍電器,廣東,所屬行業(yè) C7( 機(jī)械、設(shè)備、儀表),前三位高管平均薪酬為140萬。03年高管薪酬最低的依然是000426富龍熱力的1.14萬。而且,04年所有樣本的平均高管薪酬為20.67萬,03年所有樣本的平均高管薪酬為17.03萬。顯然,差距擴(kuò)大了。
3、業(yè)績與高管薪酬額不掛鉤。
385個(gè)樣本中,03年所有公司中用來衡量業(yè)績的“扣除非經(jīng)常性損益的凈利潤為基礎(chǔ)計(jì)算的凈資產(chǎn)收益率”ROE最高的為000617石油濟(jì)柴, 山東,所屬行業(yè)C7(機(jī)械、設(shè)備、儀表)0.4074,其前三位高管平均薪酬10.80萬,ROE最低的為000633合金投資,遼寧,所屬行業(yè)M(綜合),ROE=-2.3030,其前三位高管平均薪酬13.07萬。雖然業(yè)績最低,但是其高管薪酬卻比業(yè)績最高的公司高管薪酬更高?梢,業(yè)績與高管薪酬額相關(guān)度不大。
表2:
單位:萬元 股票代碼 03年ROE(%) 04年薪酬 03年薪酬
max 000617 0.4074 10.7967 8.4933
min 000633 -2.3030 13.0667 7.8000
average 0.0192 20.6651 17.0252
4、公司規(guī)模對(duì)高管薪酬有較為顯著的`影響。
表3:
單位:萬元 股票代碼 總股本(單位:股) 04年薪酬 03年薪酬
max 000898 2,962,942,246.0000 15.5000 15.5200
min 000669 61,670,000.0000 5.1667 5.1667
average 425,046,459.0701 20.6651 17.0252
5、與平均水平相比,國有股份額越大,薪酬水平相對(duì)更低。
表4:
單位:萬元 股票代碼 國有股比例(%) 04年薪酬 03年薪酬
max 000898 0.848477 17.6667 13.6667
min 多個(gè)股票
average 0.290516 20.6651 17.0252
(二)回歸分析
我們利用Eviews軟件,用OLS方法估計(jì)得到:(見附表1)
LY04=0.491748+0.835528LY03+0.167638D1-0.013293D2-0.050005D3+0.050402X1
(0.788230) (29.11029) (2.148697) (-0.262773) (-0.554123) (0.490981)
+0.093156LX2-0.090802X3
(2.973939) (-1.112710)
可見,可決系數(shù)比較高,F(xiàn)也較高,但、、、都不顯著,而且按照以上的經(jīng)濟(jì)意義分析來看,、與經(jīng)濟(jì)意義不符,因此,我們?cè)賹?duì)上述模型進(jìn)行計(jì)量經(jīng)濟(jì)學(xué)的檢驗(yàn),并進(jìn)行修正,看是否能使模型方程得到改進(jìn)。
六、回歸分析的計(jì)量經(jīng)濟(jì)學(xué)模型檢驗(yàn)
(一)多重共線性檢驗(yàn)
用EVIEWS軟件,得相關(guān)系數(shù)矩陣表:
表5
LY03 D1 D2 D3 X1 LX2 X3
LY03 1.000000 0.277966 0.412111 0.009197 0.101279 0.321093 -0.034610
D1 0.277966 1.000000 0.265374 -0.075589 0.097060 0.226111 -0.054472
D2 0.412111 0.265374 1.000000 0.021739 0.060491 0.161198 -0.001576
D3 0.009197 -0.075589 0.021739 1.000000 -0.168662 -0.100160 -0.151421
X1 0.101279 0.097060 0.060491 -0.168662 1.000000 0.186132 0.046258
LX2 0.321093 0.226111 0.161198 -0.100160 0.186132 1.000000 0.107431
X3 -0.034610 -0.054472 -0.001576 -0.151421 0.046258 0.107431 1.000000
由上表我們可以看出,解釋變量、虛擬變量和滯后一期變量之間的相關(guān)系數(shù)較小,可見存在輕度多重共線性。
用逐步回歸法進(jìn)行修正:(見附表2)
剔除影響不顯著的D2、D3、X1、X3
方程變?yōu)椋海ㄒ姼奖?*)
LY04 = 0.4890546548 + 0.8341617686*LY03 + 0.09252437598*LX2 + 0.1746671652*D1
(0.814811) (31.22490) (3.027865) (2.293012)
R-squared=0.770975 F-statistic =426.4015
(二)異方差檢驗(yàn)
用EVIEWS軟件,進(jìn)行ARCH檢驗(yàn),得到:(見附表3)
Obs*R-squared=0.373588< =3.84146,不存在異方差性
(三)自相關(guān)檢驗(yàn)
由于這是一個(gè)一階自回歸模型,所以我們采用德賓 h-檢驗(yàn)來檢驗(yàn)其自相關(guān)性:
對(duì)于逐步回歸法修正前的模型:
對(duì)于逐步回歸法修正后的模型:(見附表2*)
在0.05的顯著性水平下,上述兩個(gè)h<1.96,即不存在一階自相關(guān)。
七、結(jié)論
那么我們的模型估計(jì)式就是經(jīng)過逐步回歸法修正所得到的結(jié)果:
LY04 = 0.4890546548 + 0.8341617686*LY03 + 0.09252437598*LX2 + 0.1746671652*D1
(0.814811) (31.22490) (3.027865) (2.293012)
R-squared=0.770975 F-statistic =426.4015
經(jīng)過修正后,我們可以看出,各t統(tǒng)計(jì)量非常顯著,而且可決系數(shù)和F統(tǒng)計(jì)量也都比較大,也就是說方程整體擬合效果較好。結(jié)合經(jīng)濟(jì)意義,以及回歸結(jié)果(附表1),我們得出以下結(jié)論:
1、總體而言,上市公司高管平均薪酬的對(duì)數(shù)與其上一年的平均薪酬的對(duì)數(shù)、反映公司規(guī)模的總股本的對(duì)數(shù)以及是否發(fā)行H股或B股,呈現(xiàn)多元線性關(guān)系。
2、高管薪酬受其上一期薪酬水平的顯著影響。
3、高管薪酬與經(jīng)營業(yè)績(扣除非經(jīng)營性損益的凈利潤為基礎(chǔ)計(jì)算的凈資產(chǎn)收益率/加權(quán))雖然存在正相關(guān)關(guān)系,但不顯著。即表明我國上市公司的委托代理激勵(lì)機(jī)制尚未建立健全,高管的薪酬與其經(jīng)營的業(yè)績沒有什么關(guān)系。“干多干少一個(gè)樣的,干好干壞一個(gè)樣”的傳統(tǒng)計(jì)劃經(jīng)濟(jì)體制下的經(jīng)營管理模式仍未改變。
4、高管薪酬與公司規(guī)模存在顯著正相關(guān)關(guān)系。從積極的角度看,這體現(xiàn)了企業(yè)家在管理更大的企業(yè)時(shí)所體現(xiàn)的企業(yè)家價(jià)值獲得了更多的補(bǔ)償;但從另一個(gè)角度看,也說明了為什么我國上市公司那么熱衷于“圈錢”、擴(kuò)大企業(yè)規(guī)模。
5、高管薪酬與國有股權(quán)比例存在負(fù)相關(guān)關(guān)系,但不顯著。國有企業(yè)的改制,以及國有股的逐步減持,都能說明國家持股對(duì)于上市公司高管的薪酬影響漸漸減弱。
6、上市公司是否同時(shí)發(fā)行B股或H股,顯著影響著高管薪酬。同時(shí)在B股市場發(fā)行股票或在香港聯(lián)交所上市的上市公司的高管薪酬顯著高于一般水平。
7、上市公司所處的地區(qū)對(duì)上市公司高管薪酬影響不顯著,而且違背了我們做出的假設(shè)或者說是經(jīng)濟(jì)意義。究其原因,可能是地區(qū)差異按照省份劃分不合理,忽略了省內(nèi)發(fā)達(dá)城市與不發(fā)達(dá)城市的區(qū)別,同時(shí),由于樣本選取中只選擇了深市,所以樣本中沒有包括上海的上市公司。當(dāng)然也可能是地區(qū)因素根本不顯著,即對(duì)于薪酬沒什么影響。
8、上市公司所在行業(yè)沒有顯著影響高管的薪酬。而且,基于對(duì)行業(yè)虛擬變量的假設(shè),認(rèn)為綜合類的上市公司(通常認(rèn)為是集團(tuán)類企業(yè))由于其主營業(yè)務(wù)多樣,而應(yīng)具有更好的盈利能力及抗風(fēng)險(xiǎn)能力,因而高管薪酬應(yīng)較高。但回歸結(jié)果與假定相反,這可能是因?yàn)橐环矫,我國上市公司行業(yè)分類本身存在一定的缺陷,很多綜合類公司并非我們假定中認(rèn)為的集團(tuán)類上市公司,而只是主營業(yè)務(wù)有兩項(xiàng)超過判斷標(biāo)準(zhǔn);另一方面,由于數(shù)據(jù)錄入的困難,沒有具體的對(duì)各個(gè)行業(yè)進(jìn)行判斷,所以可能讓高盈利水平的行業(yè)影響沒有表現(xiàn)出來。
九、不足之處
當(dāng)然,由于我們水平有限,不足之處如下所述:
①由于錄入數(shù)據(jù)的工作量太大,所以我們只選擇了深交所的上市公司作為樣本。這樣影響了對(duì)于我國上市公司的全面反映,而且地區(qū)因素也可能因此不顯著。
②對(duì)于行業(yè)的分類以及虛擬變量的設(shè)定還不夠合理,有待完善
另注:對(duì)于高管薪酬的反映,忽略了高管可能獲得的福利及“灰色收入”,而單純考慮其年報(bào)所披露的收入。由于福利及灰色收入的不確定性和難以統(tǒng)計(jì)性,同時(shí),也由于這些福利與灰色收入對(duì)于所有上市公司應(yīng)該是普遍存在,所以我們不得不選擇在研究時(shí)忽略這些。
歡迎大家一同探討、指正。
參考文獻(xiàn)
[1] 李增泉《激勵(lì)機(jī)制與企業(yè)績效——一項(xiàng)基于上市公司的實(shí)證研究》(2000)
[2] 諶新民、劉善敏的《上市公司經(jīng)營者報(bào)酬結(jié)構(gòu)性差異的實(shí)證研究》(2003)
[3] 楊漢明的《高管薪酬與上市公司績效的實(shí)證分析》(2004)
[4] 李興緒、揚(yáng)燕紅、章玲和鄭樹明的《國有控股上市公司經(jīng)營者薪酬安排的實(shí)證研究》
附錄
(附表1)
Dependent Variable: LY04
Method: Least Squares
Date: 06/06/05 Time: 10:35
Sample(adjusted): 1 384
Included observations: 384 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob.
C 0.491748 0.623864 0.788230 0.4311
LY03 0.835528 0.028702 29.11029 0.0000
D1 0.167638 0.078019 2.148697 0.0323
D2 -0.013293 0.050589 -0.262773 0.7929
D3 -0.050005 0.090242 -0.554123 0.5798
X1 0.050402 0.102656 0.490981 0.6237
LX2 0.093156 0.031324 2.973939 0.0031
X3 -0.090802 0.081604 -1.112710 0.2665
R-squared 0.772059 Mean dependent var 12.99271
Adjusted R-squared 0.767815 S.D. dependent var 0.826929
S.E. of regression 0.398460 Akaike info criterion 1.018194
Sum squared resid 59.69766 Schwarz criterion 1.100499
Log likelihood -187.4933 F-statistic 181.9356
Durbin-Watson stat 1.910938 Prob(F-statistic) 0.000000
(附表2)
Dependent Variable: LY04
Method: Least Squares
Date: 06/06/05 Time: 10:25
Sample(adjusted): 1 384
Included observations: 384 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob.
C 1.775929 0.322468 5.507298 0.0000
LY03 0.876329 0.025142 34.85581 0.0000
R-squared 0.760791 Mean dependent var 12.99271
Adjusted R-squared 0.760164 S.D. dependent var 0.826929
S.E. of regression 0.404972 Akaike info criterion 1.035196
Sum squared resid 62.64882 Schwarz criterion 1.055772
Log likelihood -196.7576 F-statistic 1214.928
Durbin-Watson stat 1.877970 Prob(F-statistic) 0.000000
Dependent Variable: LY04
Method: Least Squares
Date: 06/06/05 Time: 10:29
Sample(adjusted): 1 384
Included observations: 384 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob.
C 0.123131 0.581827 0.211629 0.8325
LY03 0.847798 0.026189 32.37178 0.0000
LX2 0.103065 0.030378 3.392744 0.0008
R-squared 0.767806 Mean dependent var 12.99271
Adjusted R-squared 0.766587 S.D. dependent var 0.826929
S.E. of regression 0.399513 Akaike info criterion 1.010640
Sum squared resid 60.81159 Schwarz criterion 1.041504
Log likelihood -191.0428 F-statistic 629.9334
Durbin-Watson stat 1.885471 Prob(F-statistic) 0.000000
(附表2*)
Dependent Variable: LY04
Method: Least Squares
Date: 06/06/05 Time: 10:30
Sample(adjusted): 1 384
Included observations: 384 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob.
C 0.489055 0.600206 0.814811 0.4157
LY03 0.834162 0.026715 31.22490 0.0000
LX2 0.092524 0.030558 3.027865 0.0026
D1 0.174667 0.076174 2.293012 0.0224
R-squared 0.770975 Mean dependent var 12.99271
Adjusted R-squared 0.769167 S.D. dependent var 0.826929
S.E. of regression 0.397299 Akaike info criterion 1.002106
Sum squared resid 59.98164 Schwarz criterion 1.043259
Log likelihood -188.4044 F-statistic 426.4015
Durbin-Watson stat 1.895634 Prob(F-statistic) 0.000000
Dependent Variable: LY04
Method: Least Squares
Date: 06/06/05 Time: 10:32
Sample(adjusted): 1 384
Included observations: 384 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob.
C 0.450153 0.601325 0.748601 0.4546
LY03 0.832586 0.026755 31.11834 0.0000
LX2 0.096799 0.030833 3.139511 0.0018
D1 0.169385 0.076337 2.218909 0.0271
X3 -0.083296 0.080470 -1.035116 0.3013
R-squared 0.771620 Mean dependent var 12.99271
Adjusted R-squared 0.769210 S.D. dependent var 0.826929
S.E. of regression 0.397262 Akaike info criterion 1.004492
Sum squared resid 59.81255 Schwarz criterion 1.055932
Log likelihood -187.8624 F-statistic 320.1292
Durbin-Watson stat 1.902857 Prob(F-statistic) 0.000000
Dependent Variable: LY04
Method: Least Squares
Date: 06/06/05 Time: 10:33
Sample(adjusted): 1 384
Included observations: 384 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob.
C 0.475856 0.603097 0.789020 0.4306
LY03 0.833450 0.026809 31.08808 0.0000
LX2 0.095219 0.030953 3.076284 0.0022
D1 0.165601 0.076620 2.161336 0.0313
X3 -0.090906 0.081386 -1.116972 0.2647
D3 -0.057548 0.088952 -0.646954 0.5181
R-squared 0.771873 Mean dependent var 12.99271
Adjusted R-squared 0.768855 S.D. dependent var 0.826929
S.E. of regression 0.397567 Akaike info criterion 1.008593
Sum squared resid 59.74639 Schwarz criterion 1.070322
Log likelihood -187.6499 F-statistic 255.7941
Durbin-Watson stat 1.911948 Prob(F-statistic) 0.000000
Dependent Variable: LY04
Method: Least Squares
Date: 06/06/05 Time: 10:34
Sample(adjusted): 1 384
Included observations: 384 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob.
C 0.523272 0.611464 0.855768 0.3927
LY03 0.832893 0.026861 31.00801 0.0000
LX2 0.093106 0.031285 2.976085 0.0031
D1 0.164107 0.076758 2.137990 0.0332
X3 -0.091375 0.081474 -1.121526 0.2628
D3 -0.050959 0.090058 -0.565854 0.5718
X1 0.050064 0.102521 0.488325 0.6256
R-squared 0.772017 Mean dependent var 12.99271
Adjusted R-squared 0.768389 S.D. dependent var 0.826929
S.E. of regression 0.397968 Akaike info criterion 1.013169
Sum squared resid 59.70863 Schwarz criterion 1.085186
Log likelihood -187.5285 F-statistic 212.7721
Durbin-Watson stat 1.910351 Prob(F-statistic) 0.000000
(附表3)
ARCH Test:
F-statistic 0.372000 Probability 0.542280
Obs*R-squared 0.373588 Probability 0.541055
Test Equation:
Dependent Variable: RESID^2
Method: Least Squares
Date: 06/06/05 Time: 10:52
Sample(adjusted): 2 384
Included observations: 383 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob.
C 0.161364 0.019433 8.303617 0.0000
RESID^2(-1) -0.031235 0.051212 -0.609918 0.5423
R-squared 0.000975 Mean dependent var 0.156473
Adjusted R-squared -0.001647 S.D. dependent var 0.346138
S.E. of regression 0.346423 Akaike info criterion 0.722897
Sum squared resid 45.72346 Schwarz criterion 0.743514
Log likelihood -136.4348 F-statistic 0.372000
Durbin-Watson stat 1.992667 Prob(F-statistic) 0.542280
數(shù)據(jù)表
股票
代碼 2004年 高管薪酬前三位總額(元) 2003年 高管薪酬前三位總額(元) 是否發(fā)行H股或B股 地區(qū) 行業(yè) 經(jīng)營業(yè)績(扣除非經(jīng)營性損益的凈利潤為基礎(chǔ)計(jì)算的凈資產(chǎn)收益率/加權(quán))% 總股本(股) 國有股
比例
000001 2,290,000 1,660,000 0 1 0 0.0592 1,945,822,149 0.000882
000002 5,150,000 1,770,000 1 1 0 0.1558 2,273,627,871 0.069603
000004 930,000 900,000 0 1 0 -0.0448 83,976,684 0.000000
000006 541,300 746,000 0 1 0 0.0069 253,591,631 0.280248
000007 560,000 430,000 0 1 0 -1.4417 143,593,664 0.049668
000009 540,000 540,000 0 1 1 -0.0122 958,810,042 0.227963
000010 225,000 225,000 0 1 0 -0.0952 147,017,448 0.000000
000012 1,480,000 1,230,500 1 1 0 0.1418 676,975,416 0.000000
000014 734,800 514,000 0 1 0 0.0982 89,646,750 0.288000
000016 739,200 739,200 1 1 0 0.0319 601,986,352 0.000000
000018 610,000 610,000 1 1 0 0.0028 169,142,356 0.280000
000019 344,600 332,700 1 1 0 0.0205 115,846,292 0.380592
000021 630,000 574,000 0 1 0 0.0867 732,932,101 0.559619
000022 1,560,000 1,060,000 1 1 0 0.3193 495,972,100 0.000000
000023 421,000 338,000 0 1 0 -0.0665 138,756,240 0.267123
000024 1,285,000 1,096,000 1 1 0 0.1146 618,822,672 0.000000
000026 888,100 730,700 1 1 0 0.0048 249,317,999 0.000000
000027 814,000 811,000 0 1 0 0.1696 1,202,495,332 0.552833
000028 829,600 843,700 1 1 0 0.0662 288,149,400 0.433333
000029 440,000 450,000 1 1 0 -0.1283 1,011,660,000 0.735247
000031 1,460,000 1,450,000 0 1 0 0.0903 466,302,377 0.596314
000032 1,190,000 1,029,300 0 1 0 0.0422 194,053,600 0.049634
000036 320,000 320,000 0 1 0 0.0048 449,555,085 0.000000
000037 2,600,000 2,750,000 1 1 0 0.2393 547,965,998 0.156103
000038 420,000 357,000 0 1 0 -0.0591 90,486,000 0.000000
000039 3,100,000 1,660,000 1 1 0 0.3276 1,008,483,353 0.000000
000042 1,054,000 1,055,000 0 1 0 0.0405 239,463,040 0.348001
000043 778,600 445,000 0 1 1 0.1126 139,325,472 0.000000
000045 936,800 668,100 1 1 0 0.0608 245,124,000 0.662359
000046 1,228,200 1,080,000 0 1 0 0.0819 292,901,209 0.000000
000050 2,258,000 576,000 0 1 0 0.1222 265,540,000 0.127356
000055 1,021,800 758,600 1 1 0 -0.0025 296,400,000 0.000000
000056 636,000 295,000 1 1 0 -0.1632 220,901,184 0.190290
000058 1,047,000 925,000 1 1 0 0.0706 726,145,863 0.326876
000059 300,000 98,000 0 0 0 0.1096 663,225,214 0.000000
000060 1,240,000 957,900 0 1 0 0.1167 432,000,000 0.495833
000061 750,200 845,200 0 1 0 0.0005 387,663,442 0.250912
000062 360,000 360,000 0 1 1 0.0349 270,399,998 0.525000
000063 4,285,000 2,777,700 1 1 0 0.1082 959,521,650 0.481774
000065 881,200 851,800 0 1 0 0.0821 162,437,120 0.743901
000066 840,000 770,000 0 1 0 0.2196 458,491,500 0.604660
000068 1,020,000 1,009,000 0 1 0 0.1075 785,970,517 0.144018
000069 1,837,600 748,000 0 1 0 0.2075 1,052,839,659 0.019827
000070 860,000 695,000 0 1 0 -0.0031 250,000,000 0.392380
000078 1,280,000 730,000 0 1 0 0.0099 332,700,000 0.000000
000088 1,415,200 2,030,000 0 1 0 0.1903 1,245,000,000 0.738956
000089 1,187,100 363,200 0 1 0 0.0946 799,824,000 0.639921
000090 1,200,000 1,200,000 0 1 0 0.0377 223,261,600 0.506946
000096 1,336,400 1,309,200 0 1 0 0.1183 528,000,000 0.212000
000099 1,080,000 1,050,000 0 1 0 0.0692 513,600,000 0.580561
000100 1,340,000 1,890,000 0 1 0 0.0081 2,586,331,144 0.252204
000151 756,804 619,600 0 1 0 0.0360 295,980,000 0.645246
000153 128,800 122,400 0 0 0 0.0150 130,004,600 0.495341
000155 190,800 180,000 0 0 0 0.0190 470,000,000 0.723404
000157 987,000 987,000 0 0 0 0.2388 507,000,000 0.498350
000158 56,500 47,900 0 0 0 0.0211 430,000,000 0.691116
000159 276,000 360,000 0 0 0 -0.0242 171,792,300 0.551784
000301 125,000 128,000 0 0 0 0.0046 467,928,397 0.624382
000400 436,500 279,100 0 0 0 0.0689 378,272,000 0.456391
000401 495,300 1,263,600 0 0 0 0.0627 962,770,614 0.629347
000402 2,780,000 1,670,000 0 0 0 0.1443 459,126,640 0.441178
000403 567,100 349,200 0 0 0 -0.3517 211,683,491 0.409914
000404 109,600 133,000 0 0 0 -0.0652 260,853,837 0.406694
000406 392,100 340,100 0 0 0 0.0717 364,027,608 0.263349
000407 459,200 299,000 0 0 0 0.0132 287,506,509 0.004174
000408 266,400 176,400 0 0 0 -0.0911 114,720,000 0.000000
000410 200,000 150,000 0 0 0 0.0702 340,919,303 0.544248
000413 121,200 115,200 1 0 0 0.0243 383,000,000 0.601594
000415 258,209 241,396 0 0 0 -0.0960 233,179,996 0.280810
000416 252,000 252,000 0 0 0 0.1861 408,249,882 0.000000
000417 375,000 315,000 0 0 0 0.0424 189,239,764 0.501024
000419 270,000 270,000 0 0 0 0.0368 175,508,155 0.559233
000420 57,900 69,400 0 0 0 0.0631 378,257,464 0.389395
000421 316,800 352,700 0 0 0 0.0607 256,337,906 0.285623
000422 877,500 580,000 0 0 0 0.1154 246,535,475 0.255038
000423 1,242,700 443,700 0 0 0 0.1303 408,711,549 0.296251
000425 1,123,500 730,000 0 0 0 0.0411 545,087,620 0.000000
000426 34,300 34,300 0 0 0 -0.0459 266,207,356 0.630524
000428 312,000 312,000 0 0 0 0.0472 172,840,000 0.647998
000429 918,900 464,800 1 1 0 0.0729 1,257,117,748 0.377674
000430 390,000 260,000 0 0 0 0.0698 183,600,000 0.000000
000488 1,800,000 3,380,000 1 0 0 0.0936 897,727,903 0.314010
000501 639,200 583,200 0 0 0 -0.0543 507,248,590 0.297542
000502 416,000 520,500 0 0 0 0.1548 155,668,513 0.000000
000503 948,000 912,000 0 0 1 0.0136 749,018,504 0.000000
000504 805,700 766,000 0 0 1 0.0714 311,573,901 0.267874
000506 120,000 100,000 0 0 0 -0.1121 249,101,743 0.330533
000507 652,200 486,300 0 1 1 0.0283 344,997,420 0.207984
000509 216,100 348,200 0 0 0 -0.1196 250,009,889 0.000000
000510 660,000 460,000 0 0 0 0.1197 609,182,254 0.133359
000511 182,400 187,200 0 0 0 0.0645 269,821,425 0.000000
000513 4,209,900 1,678,000 1 1 0 0.0897 306,035,482 0.000000
000514 217,300 158,800 0 0 0 0.0120 117,542,880 0.522934
000515 240,000 240,000 0 0 0 0.0772 187,207,488 0.275491
000516 400,000 216,000 0 0 0 0.0732 130,378,296 0.215115
000517 753,000 336,000 0 0 0 -0.1358 233,307,495 0.000000
000518 1,680,000 168,000 0 0 0 0.0108 1,029,556,222 0.000000
000519 320,000 297,900 0 0 0 -0.0387 136,538,286 0.448418
000521 1,503,300 633,600 1 0 0 0.0137 413,642,949 0.098016
000522 733,000 2,270,000 0 1 0 0.0515 374,344,355 0.290909
000523 397,200 366,000 0 1 0 -0.0011 229,350,622 0.589333
000524 338,000 435,000 0 1 0 0.0600 269,673,744 0.176261
000525 504,000 407,400 0 0 0 0.0800 280,238,842 0.458956
000526 132,000 193,200 0 0 1 -0.0029 79,250,285 0.000000
000527 1,090,000 1,330,000 0 1 0 0.1072 484,889,726 0.000000
000528 2,955,200 2,047,300 0 0 0 0.1621 472,456,179 0.000000
000530 390,000 358,000 1 0 0 0.0768 350,014,975 0.303892
000531 263,100 231,800 0 1 0 0.1617 266,521,260 0.360115
000532 361,200 730,000 0 1 0 -0.0267 283,909,859 0.331761
000534 199,000 152,000 0 1 0 -0.0112 208,261,325 0.383461
000538 394,700 363,520 0 0 0 0.2395 241,563,368 0.661366
000539 910,000 895,000 1 1 0 0.1172 2,659,404,000 0.517036
000540 850,000 850,000 0 0 1 -0.4548 326,811,466 0.110892
000541 840,000 700,000 1 1 0 0.0998 358,448,259 0.239706
000543 617,000 619,000 0 0 0 0.0522 773,008,816 0.605426
000545 132,000 153,000 0 0 0 0.0585 135,635,820 0.000000
000547 158,500 130,000 0 0 0 0.0239 122,423,174 0.000000
000548 354,500 385,800 0 0 0 0.0197 340,608,048 0.444271
000549 3,200,000 1,120,000 0 0 0 0.1481 936,286,560 0.079460
000550 1,700,000 1,000,000 1 0 0 0.1523 863,214,000 0.410299
000551 743,200 668,100 0 0 0 0.0801 241,726,394 0.416893
000553 150,000 100,000 1 0 0 0.0133 296,961,610 0.285321
000554 455,000 411,300 0 0 0 0.0859 480,793,320 0.386764
000558 310,000 240,000 0 0 0 0.0866 117,164,373 0.000000
000559 444,000 280,800 0 0 0 0.0950 732,562,404 0.000000
000562 972,000 828,000 0 0 0 -0.8459 608,745,150 0.000000
000563 396,300 310,000 0 0 0 -0.2717 314,187,026 0.510398
000564 420,000 228,000 0 0 0 0.0331 202,007,024 0.256452
000565 120,000 91,500 0 0 0 0.0110 173,436,888 0.495991
000568 216,000 231,700 0 0 0 0.0291 841,399,673 0.695604
000569 153,800 166,746 0 0 0 0.0109 695,142,187 0.000000
000573 648,000 538,800 0 1 1 0.0243 451,283,864 0.000000
000576 156,000 156,000 0 1 0 -0.0181 247,598,624 0.358433
000578 252,660 211,032 0 0 0 -0.6790 198,153,422 0.063587
000581 671,800 700,000 1 0 0 0.1050 436,366,150 0.278587
000582 152,400 182,200 0 0 0 -0.0911 188,471,800 0.285767
000584 202,900 151,400 0 0 1 0.0635 303,352,615 0.059264
000589 259,200 259,200 0 0 0 0.0208 254,327,065 0.510000
000590 205,500 110,000 0 0 0 0.0232 203,028,425 0.420201
000591 350,000 350,000 0 0 0 0.0003 109,852,811 0.651534
000593 248,900 226,300 0 0 0 -0.0218 190,307,288 0.000000
000595 224,000 135,900 0 0 0 0.0377 174,959,878 0.477638
000597 396,000 396,000 0 0 0 0.0050 303,810,000 0.600770
000598 360,000 264,000 0 0 0 0.0043 232,669,798 0.000000
000599 131,900 96,900 0 0 0 0.0447 225,079,327 0.478551
000600 199,600 235,800 0 0 1 0.1642 153,733,407 0.308277
000601 289,600 289,600 0 1 0 0.0345 441,873,200 0.160540
000602 117,000 97,000 0 1 0 0.2210 150,750,000 0.000000
000605 360,000 384,000 0 1 0 0.0644 82,500,000 0.000000
000606 86,900 89,000 0 0 0 -0.0037 151,702,000 0.358215
000607 752,000 480,000 0 0 0 0.0656 357,955,451 0.000000
000608 1,185,000 1,081,000 0 0 0 0.1758 292,040,280 0.111893
000609 382,316 384,700 0 1 0 0.0466 129,606,749 0.445197
000610 242,100 236,800 0 0 0 0.0128 167,597,900 0.379228
000611 256,000 124,800 0 0 0 0.0613 175,040,565 0.000000
000612 1,281,600 826,500 0 0 0 0.0413 480,176,083 0.523441
000615 170,000 170,000 0 0 0 -0.0078 154,908,460 0.142649
000616 181,132 780,000 0 0 0 0.2017 283,413,000 0.057143
000617 323,900 254,800 0 0 0 0.4074 166,400,000 0.000000
000619 451,900 345,500 0 0 0 0.0414 360,000,000 0.000000
000623 1,560,000 340,000 0 0 0 0.0442 350,496,900 0.141921
000625 900,000 220,900 1 0 0 0.1691 1,620,849,200 0.000000
000626 66,000 63,840 0 0 0 0.0640 202,500,000 0.306000
000627 420,000 1,300,000 0 0 0 -0.0120 594,794,933 0.213812
000628 255,000 255,000 0 0 0 0.0150 193,560,000 0.156851
000629 220,400 184,600 0 0 0 0.1195 1,306,845,288 0.000000
000630 270,000 130,000 0 0 0 0.1088 834,011,829 0.503907
000632 1,782,200 1,778,000 0 0 1 0.0361 336,984,918 0.258441
000633 392,000 234,000 0 0 1 -2.3030 385,106,373 0.081113
000636 1,066,400 872,600 0 1 0 0.0115 530,330,955 0.379160
000637 675,000 675,000 0 1 0 0.0267 376,721,273 0.177967
000639 334,800 185,000 0 0 0 0.1063 72,864,935 0.015753
000651 1,130,000 940,000 0 1 0 0.1678 536,940,000 0.000000
000652 203,800 142,000 0 0 0 -0.0102 1,053,981,323 0.357517
000655 143,900 122,500 0 0 0 -0.3797 259,254,374 0.344913
000657 416,000 426,000 0 0 0 0.0249 171,081,300 0.434291
000659 230,000 230,000 0 1 0 0.0658 688,295,600 0.000000
000661 193,800 235,000 0 0 0 -0.0607 131,326,570 0.346276
000662 170,100 190,500 0 0 1 0.2408 149,992,500 0.000000
000663 256,800 281,604 0 0 0 0.0103 167,232,600 0.111434
000665 560,000 520,000 0 0 0 -0.0332 140,969,488 0.304855
000666 531,000 529,200 1 0 0 0.0553 603,800,000 0.000000
000667 288,000 90,000 0 0 0 0.1286 245,028,000 0.230341
000668 656,000 381,400 0 0 0 0.0860 146,841,890 0.600891
000669 155,000 155,000 0 0 0 0.0165 61,670,000 0.000000
000671 240,500 299,000 0 0 1 0.0809 95,173,092 0.000000
000672 62,000 52,500 0 0 0 -0.5560 151,969,995 0.492857
000673 101,183 79,870 0 0 0 0.0032 173,400,000 0.000000
000676 408,000 452,000 0 0 0 0.0712 314,586,699 0.000000
000677 1,700,000 1,000,000 0 0 0 0.1563 411,348,974 0.000000
000679 451,645 331,642 0 0 0 0.0472 237,600,000 0.545455
000680 773,500 565,100 0 0 0 0.0661 539,385,600 0.000000
000681 252,000 398,600 0 0 0 -0.0900 198,750,000 0.183742
000685 546,600 526,000 0 1 0 0.0331 225,423,000 0.389333
000686 140,000 90,000 0 0 0 0.0360 162,132,516 0.558709
000687 105,100 172,100 0 0 0 0.0063 320,800,000 0.696072
000688 1,950,000 1,888,100 0 0 0 -0.3936 348,210,999 0.000000
000690 194,900 194,900 0 1 1 0.0687 211,050,000 0.000000
000692 300,000 300,800 0 0 0 0.0042 266,416,488 0.559537
000693 166,000 176,500 0 0 0 -0.0875 192,693,908 0.051134
000697 245,400 130,000 0 0 0 0.0168 217,461,700 0.399973
000698 340,000 333,381 0 0 0 0.0265 422,406,560 0.466637
000700 200,000 200,000 0 0 0 0.0635 309,043,600 0.000000
000701 559,500 321,600 0 0 1 -0.0498 200,000,000 0.425000
000702 608,000 588,000 0 0 0 -0.5210 282,804,576 0.460473
000703 208,300 208,320 0 0 0 -0.0208 106,600,000 0.000000
000705 312,200 245,300 0 0 0 -0.0145 125,329,360 0.293065
000707 80,400 77,800 0 0 0 0.0031 464,145,765 0.398024
000708 153,600 112,000 0 0 0 0.0648 449,408,480 0.388552
000709 371,100 352,500 0 0 0 0.1465 1,954,978,790 0.608960
000711 234,500 182,000 0 0 0 0.0626 107,265,600 0.026178
000712 400,000 670,000 0 1 0 0.0193 152,311,524 0.000000
000713 387,000 278,000 0 0 0 0.0219 225,000,000 0.532000
000715 1,130,000 920,000 0 0 0 0.0778 214,620,000 0.363666
000716 752,600 590,500 0 0 1 -0.0251 178,259,538 0.040964
000717 698,000 500,000 0 1 0 0.1882 838,200,000 0.558339
000719 270,000 42,000 0 0 0 -0.1591 129,375,688 0.000000
000720 570,700 355,100 0 0 0 0.0219 863,460,000 0.422390
000721 402,500 395,600 0 0 0 0.0636 171,622,650 0.305904
000723 190,000 180,000 0 0 0 0.0903 139,599,195 0.000000
000725 3,635,000 3,121,000 1 1 0 0.0328 1,463,797,200 0.403370
000726 1,287,000 2,033,000 1 0 0 0.1754 422,432,400 0.000000
000727 206,900 202,300 0 0 0 0.0236 359,157,356 0.000000
000728 493,000 366,000 0 1 0 0.0883 345,210,000 0.698734
000729 520,000 242,544 0 1 0 0.0643 674,643,432 0.026054
000731 706,000 546,000 0 0 0 0.1831 245,665,700 0.362814
000732 270,000 270,000 0 1 0 -0.1679 198,469,440 0.000000
000733 230,000 172,700 0 0 0 0.0100 358,120,000 0.000000
000735 369,700 325,500 0 1 0 0.0087 587,254,000 0.014764
000737 199,600 161,400 0 0 0 0.0036 457,300,000 0.535972
000739 362,100 217,500 0 0 0 0.1016 145,749,230 0.020995
000748 560,000 480,000 0 0 0 -0.0869 276,374,780 0.493441
000750 397,200 313,481 0 0 0 0.2708 215,057,400 0.413369
000751 79,500 76,000 0 0 0 0.0229 881,098,771 0.587099
000752 150,000 150,000 0 0 0 0.0763 102,413,045 0.392951
000753 284,000 227,300 0 1 0 0.0089 360,756,209 0.073257
000755 548,000 540,000 0 0 0 0.0300 311,053,851 0.541773
000756 430,000 909,000 0 0 0 -0.0481 457,312,830 0.468913
000757 170,000 430,000 0 0 0 -0.1226 243,867,419 0.000000
000758 860,000 711,000 0 1 0 0.0372 580,800,000 0.428926
000759 438,000 249,600 0 0 0 0.0379 209,541,850 0.143990
000762 261,000 172,900 0 0 0 0.0340 200,510,000 0.000000
000763 486,000 350,000 0 0 0 0.1438 787,500,000 0.000000
000767 1,262,000 433,200 0 0 0 0.1275 848,250,000 0.000000
000768 135,001 129,600 0 0 0 0.0260 391,500,000 0.547893
000777 498,600 343,000 0 0 0 0.0226 168,000,000 0.000000
000778 1,550,000 1,400,000 0 0 0 0.1802 621,487,750 0.646493
000779 252,800 102,400 0 0 0 -0.5231 183,154,800 0.000000
000780 78,200 78,200 0 0 0 0.0231 409,117,687 0.000000
000782 820,400 519,300 0 0 0 0.0989 342,000,000 0.018075
000783 399,600 187,000 0 0 0 -0.0071 1,154,444,333 0.000000
000785 265,000 259,000 0 0 0 -0.0289 251,221,698 0.566574
000786 663,900 445,300 0 1 0 0.0384 575,150,000 0.000000
000787 1,008,000 1,310,000 0 0 0 0.0066 250,760,244 0.000000
000789 880,000 153,678 0 0 0 -0.0661 340,500,000 0.675477
000790 239,300 257,700 0 0 0 -0.0005 127,980,000 0.000000
000792 390,000 338,000 0 0 0 0.2185 767,550,000 0.330975
000793 765,000 2,035,000 0 1 0 -0.0016 680,066,288 0.071317
000795 174,400 168,000 0 0 0 0.0090 276,800,000 0.178324
000796 676,000 377,226 0 0 0 0.0153 192,410,341 0.100451
000797 441,700 608,000 0 0 0 -0.3927 389,452,440 0.665864
000798 570,000 440,000 0 1 0 -0.0205 252,000,000 0.750000
000800 419,300 513,400 0 0 0 0.0661 1,627,500,000 0.000000
000803 370,000 290,000 0 0 0 0.0100 101,361,000 0.136246
000806 750,000 510,000 0 0 0 0.0976 348,951,454 0.053505
000807 1,120,000 255,900 0 0 0 0.1015 546,000,000 0.631868
000810 306,600 335,400 0 0 0 -0.0112 129,665,718 0.084510
000811 360,000 300,000 0 0 0 0.1005 175,376,630 0.486396
000812 525,400 537,600 0 0 0 0.0464 237,007,658 0.000000
000815 96,200 84,245 0 0 0 0.0764 132,000,000 0.405191
000817 319,100 274,048 0 0 0 0.1991 1,100,000,000 0.818182
000818 67,100 79,800 0 0 0 0.0034 340,000,000 0.735294
000819 666,000 288,000 0 0 0 0.0894 165,133,860 0.000000
000820 186,000 126,000 0 0 0 -0.0301 211,416,000 0.310527
000821 132,500 106,000 0 0 0 0.0301 345,238,781 0.073094
000822 233,200 212,000 0 0 0 0.0973 458,700,000 0.000000
000823 680,000 640,000 0 1 0 0.0371 359,200,000 0.623608
000825 417,602 82,668 0 0 0 0.2041 1,291,404,000 0.547005
000829 540,000 540,000 0 0 0 0.1640 251,999,998 0.606061
000830 650,000 230,000 0 0 0 0.0989 312,012,819 0.669647
000831 378,900 590,000 0 0 0 0.0619 363,000,000 0.089256
000833 413,400 378,900 0 0 0 0.0639 252,688,500 0.395744
000835 405,300 425,800 0 1 1 0.0920 108,000,000 0.169800
000836 978,000 500,000 0 1 0 -0.1627 122,754,552 0.497777
000837 405,200 396,000 0 0 0 0.0705 232,478,400 0.414593
000839 855,400 825,500 0 1 0 0.0657 659,999,989 0.000000
000848 132,900 164,600 0 0 0 0.0686 259,250,000 0.388987
000850 102,500 84,200 0 0 0 0.0290 629,110,006 0.600000
000852 609,059 570,000 0 0 0 0.1048 308,000,000 0.750000
000858 130,900 157,200 0 0 0 0.1273 2,711,404,800 0.718310
000859 228,000 250,000 0 0 0 -0.0167 420,480,000 0.554795
000860 106,200 118,200 0 1 0 0.0718 331,450,000 0.643083
000861 102,400 82,800 0 1 0 0.0678 111,254,499 0.000000
000866 540,000 420,000 0 0 0 0.4036 2,330,000,000 0.000000
000868 639,600 187,200 0 0 0 0.0077 221,000,000 0.541176
000869 510,000 320,000 1 0 0 0.1195 405,600,000 0.538462
000875 547,000 293,300 0 0 0 0.0328 630,000,000 0.187310
000876 560,000 280,000 0 0 0 0.1013 315,292,250 0.000000
000877 553,400 410,100 0 0 0 -0.4330 208,022,400 0.539665
000878 840,000 815,000 0 0 0 0.1157 798,688,800 0.000000
000881 492,500 308,800 0 0 1 0.0423 308,918,400 0.261040
000882 547,000 586,000 0 1 0 0.0204 249,200,000 0.340372
000883 963,300 881,100 0 0 0 0.0156 285,387,695 0.000000
000886 193,000 146,600 0 0 0 0.0032 988,828,300 0.236261
000888 170,000 104,200 0 0 0 0.0825 130,660,000 0.000000
000889 609,200 320,000 0 0 0 0.0087 294,528,320 0.167216
000890 350,000 370,000 0 0 0 0.0125 292,032,000 0.003817
000892 500,000 420,000 0 0 0 0.0035 413,876,880 0.001160
000893 388,000 390,000 0 1 0 0.0894 222,000,000 0.677523
000895 1,173,800 910,000 0 0 0 0.1702 513,555,000 0.357150
000897 790,100 843,800 0 0 0 0.0145 679,499,549 0.376057
000898 465,000 465,600 0 0 0 0.1863 2,962,942,246 0.000000
000899 415,000 289,200 0 0 0 0.0205 548,032,000 0.000000
000900 216,000 216,000 0 0 0 0.0414 399,165,900 0.000000
000901 250,000 96,000 0 0 0 0.0208 221,759,998 0.553075
000902 240,000 240,000 0 1 0 -0.0832 215,000,000 0.556720
000903 890,000 672,000 0 0 0 0.0928 199,800,000 0.609610
000905 584,000 278,100 0 0 0 0.0773 295,000,000 0.677966
000906 325,000 221,000 0 0 0 0.0250 237,500,000 0.720000
000909 614,200 341,100 0 0 0 0.0090 196,000,000 0.693878
000910 148,000 134,000 0 0 0 0.0609 231,250,000 0.000000
000911 748,900 440,900 0 0 0 0.1104 262,640,000 0.639659
000912 360,000 360,000 0 0 0 0.1520 585,000,000 0.000000
000913 676,800 503,000 0 1 0 0.0753 453,536,000 0.000000
000915 447,000 433,900 0 0 0 -0.0009 153,571,199 0.298884
000916 758,700 540,100 0 1 0 0.0794 1,090,000,000 0.688073
000917 614,800 572,500 0 0 0 0.0036 260,498,978 0.373203
000918 720,000 720,000 0 0 0 -1.0232 272,003,200 0.389407
000919 709,000 704,000 0 0 0 0.1178 336,000,000 0.714286
000920 220,000 181,000 0 0 0 0.0135 422,000,000 0.000000
000921 2,678,000 4,200,000 0 1 0 -0.0291 992,006,563 0.000000
000922 86,000 86,000 0 0 0 -0.0132 298,435,000 0.549986
000923 149,300 109,300 0 0 0 0.0041 165,000,000 0.438503
000925 1,010,000 388,300 0 0 0 -0.0629 90,000,000 0.122222
000926 287,200 180,000 0 0 0 0.1751 266,695,000 0.000000
000928 109,700 73,600 0 0 0 -0.2404 282,899,000 0.000000
000929 272,000 272,000 0 0 0 -0.0311 164,976,000 0.050916
000930 272,000 235,200 0 0 0 0.0590 391,894,651 0.468493
000932 1,619,100 501,200 0 0 0 0.1612 1,765,375,000 0.743468
000933 960,000 840,000 0 0 0 0.2414 250,000,000 0.000000
000935 483,400 933,600 0 0 0 -0.1310 319,410,000 0.664976
000936 195,000 180,000 0 0 1 0.0915 302,743,592 0.000000
000937 192,000 325,900 0 0 0 0.2001 425,000,000 0.000000
000938 800,000 713,000 0 1 0 0.0287 206,080,000 0.689441
000939 792,300 816,000 0 0 0 0.1428 281,190,000 0.000000
000948 1,350,000 1,330,000 0 0 0 0.0237 140,000,552 0.000000
000949 480,000 480,000 0 0 0 0.0783 490,571,412 0.621215
000952 258,200 285,300 0 0 0 0.0163 171,226,000 0.239931
000953 447,300 205,300 0 0 0 0.0493 294,059,437 0.602670
000955 275,000 275,000 0 0 0 0.0024 225,500,000 0.000000
000956 519,600 371,700 0 0 0 0.1327 874,650,000 0.708455
000957 639,500 470,000 0 0 0 0.0173 238,504,950 0.420866
000958 515,269 443,800 0 0 0 0.0050 343,725,000 0.581933
000959 530,000 410,000 0 1 0 0.1720 2,310,020,012 0.848477
000960 530,700 191,928 0 0 0 0.2197 536,856,000 0.628660
000961 456,400 333,200 0 0 0 0.0179 300,530,000 0.563105
000962 201,900 216,600 0 0 0 0.0369 356,400,000 0.600000
000963 600,000 490,000 0 0 0 0.0469 380,000,000 0.202455
000965 308,000 308,000 0 0 0 0.0255 238,705,413 0.671443
000966 781,800 408,000 0 0 0 0.0810 370,142,040 0.623669
000967 280,000 240,000 0 0 0 -0.1496 136,786,080 0.000000
000968 260,000 130,000 0 0 0 0.1350 395,190,000 0.011513
000969 473,200 450,500 0 1 0 0.0624 244,160,000 0.603539
000970 780,000 719,400 0 1 0 0.1531 507,600,000 0.384997
000971 320,000 230,000 0 0 0 0.0444 187,000,000 0.492834
000972 345,000 345,000 0 0 0 0.0855 124,589,173 0.450272
000973 572,500 581,000 0 1 0 0.0363 408,369,910 0.360038
000975 1,070,000 756,700 0 0 0 0.0829 532,800,000 0.565758
000976 750,000 750,000 0 1 0 0.0348 421,146,000 0.311474
000977 925,700 864,000 0 0 0 0.0131 215,000,000 0.658140
000978 450,000 333,300 0 0 0 0.0891 177,000,000 0.448197
000979 197,500 200,900 0 0 1 -0.9651 94,000,000 0.000000
000981 390,000 390,000 0 0 0 -0.1981 161,000,000 0.615528
000982 450,000 480,000 0 0 0 0.0077 148,000,000 0.540541
000983 420,000 314,619 0 0 0 0.1635 808,000,000 0.643564
000985 151,900 162,500 0 0 0 0.0148 115,000,000 0.730269
000987 800,700 841,800 0 1 0 0.0804 239,305,405 0.629929
000988 658,000 438,100 0 0 0 0.0603 299,000,000 0.679508
000989 260,000 280,000 0 0 0 0.0688 261,849,861 0.000000
000990 800,000 640,000 0 0 0 0.0567 179,250,000 0.379927
000996 180,000 180,000 0 0 0 -0.1104 115,000,000 0.000000
000997 483,000 373,300 0 0 0 0.0707 232,000,000 0.000000
000998 766,500 385,700 0 0 0 0.0182 105,000,000 0.152381
000999 1,610,800 1,757,800 0 1 0 -0.3584 978,900,000 0.733068
001896 383,109 294,995 0 0 0 -0.1049 430,000,000 0.406977
【影響上市公司高管薪酬的企業(yè)因素實(shí)證分析】相關(guān)文章:
1.上市公司高管薪酬
2.淺談A股上市公司派現(xiàn)影響因素實(shí)證分析
6.中國制造業(yè)上市公司績效影響因素的實(shí)證研究
7.企業(yè)高管薪酬與企業(yè)績效的關(guān)系