久久久久无码精品,四川省少妇一级毛片,老老熟妇xxxxhd,人妻无码少妇一区二区

三對角矩陣的數(shù)值分析

時間:2024-07-17 08:07:14 數(shù)學畢業(yè)論文 我要投稿
  • 相關(guān)推薦

有關(guān)三對角矩陣的數(shù)值分析

摘要

3對角矩陣是1類很重要的特殊矩陣,在數(shù)學和物理學中有廣泛的應用.文章將根據(jù)3對角矩陣的特征,用待定系數(shù)法求解3對角線性方程組的數(shù)值解,并與常用的LU分解法從理論分析和數(shù)據(jù)實驗兩方面進行比較,結(jié)果表明,兩者的時間復雜性前者稍差,而精度兩者則相當,最后寫出兩者的C程序并運行結(jié)果.接下來用1種簡單和容易實現(xiàn)的方法求出3對角矩陣的行列式,再利用其逆矩陣可以分解成兩個很特殊的矩陣的乘積,給出1種算法實現(xiàn)3對角矩陣的逆的簡便計算。
關(guān)鍵字:3對角矩陣;待定系數(shù)法;數(shù)值解;行列式;逆

Abstract
The tridiagonal matrix is a kind of matrix that  with important special,it has widespread applications in mathematics and physics.In this paper,based on the characteristic of the tridiagonal matrix,the method of hypothetical coefficient is used for the numerical solution of tridiagonal system of linear equations,this method will be compared with the LU resolving
method through theory analysis and data experiment,compared the two methods,we will find the latter is better than the former in time complexity slightly ,but the precision is matched with each other,finally write the C procedures for the two methods and get results. The next part,an easy algorithm will be used to compute the determinant of the tridiagonal matrix.the inverse can be divided into two so special matrices that we can compute out the explicit inverse via an algorithm.
Keywords:tridiagonal matrix;numerical solution;determinant;inverse

 

目錄

前言…………………………………………………………………………………………………………1
1 兩類求解3對角方程組的數(shù)值方法……………………………………………………………………2
    1.1 問題引入 ………………………………………………………………………………………2
    1.2 待定系數(shù)法求解3對角方程組 ………………………………………………………………2
1.3 LU分解法求解3對角方程組…………………………………………………………………7
    1. 4 算法性能分析 …………………………………………………………………………………9
2 關(guān)于3對角矩陣的行列式 ……………………………………………………………………………12
    2.1 問題引入………………………………………………………………………………………12
    2.2 方法提出………………………………………………………………………………………12
    2.3 算法性能分析…………………………………………………………………………………13
3 3對角矩陣逆的數(shù)值解法 ……………………………………………………………………………15
3.1 問題引入………………………………………………………………………………………15
    3.2 算法推導及實現(xiàn)  ……………………………………………………………………………15
    3.3 程序與數(shù)值例子………………………………………………………………………………17
結(jié)論 ………………………………………………………………………………………………………20
參考文獻 …………………………………………………………………………………………………20
致謝 ………………………………………………………………………………………………………21

【三對角矩陣的數(shù)值分析】相關(guān)文章:

矩陣對角化及其應用03-07

矩陣可對角化的判定條件及推廣論文01-01

數(shù)學畢業(yè)論文-矩陣可對角化的判定條件及推廣03-04

基于IFE矩陣的CPM分析03-21

BP算法在矩陣分析基礎(chǔ)上的改進03-07

數(shù)值計算中Bcd碼校驗電路的分析與設(shè)計03-18

矩陣方程的自反和反自反矩陣解03-07

三對角系統(tǒng)并行算法的研究概況03-18

彈箭氣動熱數(shù)值分析中變物性的應用03-07