久久久久无码精品,四川省少妇一级毛片,老老熟妇xxxxhd,人妻无码少妇一区二区

小升初數(shù)學?贾R「」

時間:2024-11-01 19:34:09 小升初 我要投稿

2017小升初數(shù)學?贾R「匯總」

  6年小學學業(yè)旅程,凝聚了爸爸媽媽們無數(shù)日夜的心血,同學仔們揮灑了無數(shù)努力的汗水,在這里,yjbys小編為大家匯集了小升初考試數(shù)學?贾R點,希望對大家備考小升初有幫助哦~

2017小升初數(shù)學?贾R「匯總」

  1、年齡問題的三大特征

 、賰蓚人的年齡差是不變的;

 、趦蓚人的年齡是同時增加或者同時減少的;

 、蹆蓚人的年齡的倍數(shù)是發(fā)生變化的;

  2、植樹問題總結(jié)

  基本類型:

  在直線或者不封閉的曲線上植樹,兩端都植樹;

  在直線或者不封閉的曲線上植樹,兩端都不植樹;

  在直線或者不封閉的曲線上植樹,只有一端植樹。

  3、雞兔同籠問題

  基本概念:雞兔同籠問題又稱為置換問題、假設問題,就是把假設錯的那部分置換出來;

  基本思路:

 、 設,即假設某種現(xiàn)象存在(甲和乙一樣或者乙和甲一樣):

 、诩僭O后,發(fā)生了和題目條件不同的差,找出這個差是多少;

 、勖總事物造成的差是固定的,從而找出出現(xiàn)這個差的原因;

  ④再根據(jù)這兩個差作適當?shù)恼{(diào)整,消去出現(xiàn)的差。

  基本公式:

 、侔阉须u假設成兔子:雞數(shù)=(兔腳數(shù)×總頭數(shù)-總腳數(shù))÷(兔腳數(shù)-雞腳數(shù))

  ②把所有兔子假設成雞:兔數(shù)=(總腳數(shù)一雞腳數(shù)×總頭數(shù))÷(兔腳數(shù)一雞腳數(shù))

  關鍵問題:找出總量的差與單位量的差。

  4、盈虧問題

  基本概念:一定量的對象,按照某種標準分組,產(chǎn)生一種結(jié)果:按照另一種標準分組,又產(chǎn)生一種結(jié)果,由于分組的標準不同,造成結(jié)果的差異,由它們的關系求對象分組的組數(shù)或?qū)ο蟮目偭俊?/p>

  基本思路:先將兩種分配方案進行比較,分析由于標準的差異造成結(jié)果的變化,根據(jù)這個關系求出參加分配的總份數(shù),然后根據(jù)題意求出對象的總量.

  基本題型:

 、僖淮斡杏鄶(shù),另一次不足;

  基本公式:總份數(shù)=(余數(shù)+不足數(shù))÷兩次每份數(shù)的差

 、诋攦纱味加杏鄶(shù);

  基本公式:總份數(shù)=(較大余數(shù)-較小余數(shù))÷兩次每份數(shù)的差

 、郛攦纱味疾蛔;

  基本公式:總份數(shù)=(較大不足數(shù)-較小不足數(shù))÷兩次每份數(shù)的差

  基本特點:對象總量和總的組數(shù)是不變的。

  關鍵問題:確定對象總量和總的組數(shù)。

  5、牛吃草問題

  基本思路:假設每頭牛吃草的速度為“1”份,根據(jù)兩次不同的吃法,求出其中的總草量的差;再找出造成這種差異的原因,即可確定草的生長速度和總草量。

  基本特點:原草量和新草生長速度是不變的;

  關鍵問題:確定兩個不變的量。

  基本公式:

  生長量=(較長時間×長時間牛頭數(shù)-較短時間×短時間牛頭數(shù))÷(長時間-短時間);

  總草量=較長時間×長時間牛頭數(shù)-較長時間×生長量。

  6、平均數(shù)問題

  基本公式:

 、倨骄鶖(shù)=總數(shù)量÷總份數(shù)

  總數(shù)量=平均數(shù)×總份數(shù)

  總份數(shù)=總數(shù)量÷平均數(shù)

  ②平均數(shù)=基準數(shù)+每一個數(shù)與基準數(shù)差的和÷總份數(shù)

  基本算法:

  算出總數(shù)量以及總份數(shù),利用基本公式①或②進行計算。

  (基準數(shù)法:根據(jù)給出的數(shù)之間的關系,確定一個基準數(shù);一般選與所有數(shù)比較接近的數(shù)或者中間數(shù)為基準數(shù);以基準數(shù)為標準,求所有給出數(shù)與基準數(shù)的差;再求出所有差的和;再求出這些差的平均數(shù);最后求這個差的平均數(shù)和基準數(shù)的和,就是所求的平均數(shù),具體關系見基本公式②)。

  7 、周期循環(huán)數(shù)

  周期循環(huán)與數(shù)表規(guī)律

  周期現(xiàn)象:事物在運動變化的過程中,某些特征有規(guī)律循環(huán)出現(xiàn)。

  周期:我們把連續(xù)兩次出現(xiàn)所經(jīng)過的時間叫周期。

  關鍵問題:確定循環(huán)周期。

  閏 年:一年有366天;

 、倌攴菽鼙4整除;②如果年份能被100整除,則年份必須能被400整除;

  平 年:一年有365天。

 、 年份不能被4整除;②如果年份能被100整除,但不能被400整除。

  8、抽屜原理

  抽屜原則一:如果把(n+1)個物體放在n個抽屜里,那么必有一個抽屜中至少放有2個物體。

  例:把4個物體放在3個抽屜里,也就是把4分解成三個整數(shù)的和,那么就有以下四種情況:

  ①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1

  觀察上面四種放物體的方式,我們會發(fā)現(xiàn)一個共同特點:總有那么一個抽屜里有2個或多于2個物體,也就是說必有一個抽屜中至少放有2個物體。

  抽屜原則二:如果把n個物體放在m個抽屜里,其中n>m,那么必有一個抽屜至少有:

 、賙=[n/m ]+1個物體:當n不能被m整除時。

 、趉=n/m個物體:當n能被m整除時。

  理解知識點:[X]表示不超過X的最大整數(shù)。

  例[4.351]=4;[0.321]=0;[2.9999]=2;

  關鍵問題:構(gòu)造物體和抽屜。也就是找到代表物體和抽屜的量,而后依據(jù)抽屜原則進行運算。

  9、定義新運算

  數(shù)列求和

  等差數(shù)列:在一列數(shù)中,任意相鄰兩個數(shù)的差是一定的,這樣的一列數(shù),就叫做等差數(shù)列。

  基本概念:首項:等差數(shù)列的第一個數(shù),一般用a1表示;

  項數(shù):等差數(shù)列的所有數(shù)的個數(shù),一般用n表示;

  公差:數(shù)列中任意相鄰兩個數(shù)的差,一般用d表示;

  通項:表示數(shù)列中每一個數(shù)的公式,一般用an表示;

  數(shù)列的和:這一數(shù)列全部數(shù)字的和,一般用Sn表示.

  基本思路:等差數(shù)列中涉及五個量:a1 ,an,d, n, sn,,通項公式中涉及四個量,如果己知其中三個,就可求出第四個;求和公式中涉及四個量,如果己知其中三個,就可以求這第四個。

  基本公式:通項公式:an = a1+(n-1)d;

  通項=首項+(項數(shù)一1) ×公差;

  數(shù)列和公式:sn,= (a1+ an)×n÷2;

  數(shù)列和=(首項+末項)×項數(shù)÷2;

  項數(shù)公式:n= (an- a1)÷d+1;

  項數(shù)=(末項-首項)÷公差+1;

  公差公式:d =(an-a1))÷(n-1);

  公差=(末項-首項)÷(項數(shù)-1);

  關鍵問題:確定已知量和未知量,確定使用的公式。

  10、加法乘法原理和幾何計數(shù)

  加法原理:如果完成一件任務有n類方法,在第一類方法中有m1種不同方法,在第二類方法中有m2種不同方法……,在第n類方法中有mn種不同方法,那么完成這件任務共有:m1+ m2....... +mn種不同的方法。

  關鍵問題:確定工作的分類方法。

  基本特征:每一種方法都可完成任務。

  乘法原理:如果完成一件任務需要分成n個步驟進行,做第1步有m1種方法,不管第1步用哪一種方法,第2步總有m2種方法……不管前面n-1步用哪種方法,第n步總有mn種方法,那么完成這件任務共有:m1×m2....... ×mn種不同的方法。

  關鍵問題:確定工作的完成步驟。

  基本特征:每一步只能完成任務的一部分。

  直線:一點在直線或空間沿一定方向或相反方向運動,形成的軌跡。

  直線特點:沒有端點,沒有長度。

  線段:直線上任意兩點間的距離。這兩點叫端點。

  線段特點:有兩個端點,有長度。

  射線:把直線的一端無限延長。

  射線特點:只有一個端點;沒有長度。

 、贁(shù)線段規(guī)律:總數(shù)=1+2+3+…+(點數(shù)-1);

 、跀(shù)角規(guī)律=1+2+3+…+(射線數(shù)-1);

 、蹟(shù)長方形規(guī)律:個數(shù)=長的線段數(shù)×寬的線段數(shù):

  ④數(shù)長方形規(guī)律:個數(shù)=1×1+2×2+3×3+…+行數(shù)×列數(shù)。

  11 、質(zhì)數(shù)與合數(shù)

  質(zhì)數(shù):一個數(shù)除了1和它本身之外,沒有別的約數(shù),這個數(shù)叫做質(zhì)數(shù),也叫做素數(shù)。

  合數(shù):一個數(shù)除了1和它本身之外,還有別的約數(shù),這個數(shù)叫做合數(shù)。

  質(zhì)因數(shù):如果某個質(zhì)數(shù)是某個數(shù)的約數(shù),那么這個質(zhì)數(shù)叫做這個數(shù)的質(zhì)因數(shù)。

  分解質(zhì)因數(shù):把一個數(shù)用質(zhì)數(shù)相乘的形式表示出來,叫做分解質(zhì)因數(shù)。通常用短除法分解質(zhì)因數(shù)。任何一個合數(shù)分解質(zhì)因數(shù)的結(jié)果是唯一的。

  分解質(zhì)因數(shù)的標準表示形式:N= ,其中a1、a2、a3……an都是合數(shù)N的質(zhì)因數(shù),且a1……。

  求約數(shù)個數(shù)的公式:P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)

  互質(zhì)數(shù):如果兩個數(shù)的最大公約數(shù)是1,這兩個數(shù)叫做互質(zhì)數(shù)。

  12 、約數(shù)與倍數(shù)

  約數(shù)和倍數(shù):若整數(shù)a能夠被b整除,a叫做b的倍數(shù),b就叫做a的約數(shù)。

  公約數(shù):幾個數(shù)公有的約數(shù),叫做這幾個數(shù)的公約數(shù);其中最大的一個,叫做這幾個數(shù)的最大公約數(shù)。

  最大公約數(shù)的性質(zhì):

  1、幾個數(shù)都除以它們的最大公約數(shù),所得的幾個商是互質(zhì)數(shù)。

  2、幾個數(shù)的最大公約數(shù)都是這幾個數(shù)的約數(shù)。

  3、幾個數(shù)的公約數(shù),都是這幾個數(shù)的最大公約數(shù)的約數(shù)。

  4、幾個數(shù)都乘以一個自然數(shù)m,所得的積的最大公約數(shù)等于這幾個數(shù)的最大公約數(shù)乘以m。

  例如:12的約數(shù)有1、2、3、4、6、12;

  18的約數(shù)有:1、2、3、6、9、18;

  那么12和18的公約數(shù)有:1、2、3、6;

  那么12和18最大的公約數(shù)是:6,記作(12,18)=6;

  求最大公約數(shù)基本方法:

  1、分解質(zhì)因數(shù)法:先分解質(zhì)因數(shù),然后把相同的因數(shù)連乘起來。

  2、短除法:先找公有的約數(shù),然后相乘。

  3、輾轉(zhuǎn)相除法:每一次都用除數(shù)和余數(shù)相除,能夠整除的那個余數(shù),就是所求的最大公約數(shù)。

  公倍數(shù):幾個數(shù)公有的倍數(shù),叫做這幾個數(shù)的公倍數(shù);其中最小的一個,叫做這幾個數(shù)的最小公倍數(shù)。

  12的倍數(shù)有:12、24、36、48……;

  18的倍數(shù)有:18、36、54、72……;

  那么12和18的公倍數(shù)有:36、72、108……;

  那么12和18最小的公倍數(shù)是36,記作[12,18]=36;

  最小公倍數(shù)的性質(zhì):

  1、兩個數(shù)的任意公倍數(shù)都是它們最小公倍數(shù)的倍數(shù)。

  2、兩個數(shù)最大公約數(shù)與最小公倍數(shù)的乘積等于這兩個數(shù)的乘積。

  求最小公倍數(shù)基本方法:1、短除法求最小公倍數(shù);2、分解質(zhì)因數(shù)的方法。

  13 、數(shù)的整除

  一、基本概念和符號:

  1、整除:如果一個整數(shù)a,除以一個自然數(shù)b,得到一個整數(shù)商c,而且沒有余數(shù),那么叫做a能被b整除或b能整除a,記作b|a。

  2、常用符號:整除符號“|”,不能整除符號“ ”;因為符號“∵”,所以的符號“∴”;

  二、整除判斷方法:

  1. 能被2、5整除:末位上的數(shù)字能被2、5整除。

  2. 能被4、25整除:末兩位的數(shù)字所組成的數(shù)能被4、25整除。

  3. 能被8、125整除:末三位的數(shù)字所組成的數(shù)能被8、125整除。

  4. 能被3、9整除:各個數(shù)位上數(shù)字的和能被3、9整除。

  5. 能被7整除:

  ①末三位上數(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成數(shù)之差能被7整除。

 、谥鸫稳サ糇詈笠晃粩(shù)字并減去末位數(shù)字的2倍后能被7整除。

  6. 能被11整除:

 、倌┤簧蠑(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成的數(shù)之差能被11整除。

  ②奇數(shù)位上的數(shù)字和與偶數(shù)位數(shù)的數(shù)字和的差能被11整除。

  ③逐次去掉最后一位數(shù)字并減去末位數(shù)字后能被11整除。

  7. 能被13整除:

  ①末三位上數(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成的數(shù)之差能被13整除。

 、谥鸫稳サ糇詈笠晃粩(shù)字并減去末位數(shù)字的9倍后能被13整除。

  三、整除的性質(zhì):

  1. 如果a、b能被c整除,那么(a+b)與(a-b)也能被c整除。

  2. 如果a能被b整除,c是整數(shù),那么a乘以c也能被b整除。

  3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。

  4. 如果a能被b、c整除,那么a也能被b和c的最小公倍數(shù)整除。

  14 、余數(shù)及其應用

  余數(shù)的性質(zhì):

 、儆鄶(shù)小于除數(shù)。

 、谌鬭、b除以c的余數(shù)相同,則c|a-b或c|b-a。

  ③a與b的和除以c的余數(shù)等于a除以c的余數(shù)加上b除以c的余數(shù)的和除以c的余數(shù)。

  ④a與b的積除以c的余數(shù)等于a除以c的余數(shù)與b除以c的余數(shù)的積除以c的余數(shù)

  余數(shù)、同余與周期

  一、同余的定義:

 、偃魞蓚整數(shù)a、b除以m的余數(shù)相同,則稱a、b對于模m同余。

  ②已知三個整數(shù)a、b、m,如果m|a-b,就稱a、b對于模m同余,記作a≡b(mod m),讀作a同余于b模m。

  二、同余的性質(zhì):

 、僮陨硇裕篴≡a(mod m);

 、趯ΨQ性:若a≡b(mod m),則b≡a(mod m);

 、蹅鬟f性:若a≡b(mod m),b≡c(mod m),則a≡ c(mod m);

 、芎筒钚裕喝鬭≡b(mod m),c≡d(mod m),則a+c≡b+d(mod m),a-c≡b-d(mod m);

  ⑤相乘性:若a≡ b(mod m),c≡d(mod m),則a×c≡ b×d(mod m);

 、蕹朔叫裕喝鬭≡b(mod m),則an≡bn(mod m);

 、咄缎:若a≡ b(mod m),整數(shù)c,則a×c≡ b×c(mod m×c);

  三、關于乘方的預備知識:

  ①若A=a×b,則MA=Ma×b=(Ma)b

 、谌鬊=c+d則MB=Mc+d=Mc×Md

  四、被3、9、11除后的余數(shù)特征:

 、僖粋自然數(shù)M,n表示M的各個數(shù)位上數(shù)字的和,則M≡n(mod 9)或(mod 3);

 、谝粋自然數(shù)M,X表示M的各個奇數(shù)位上數(shù)字的和,Y表示M的各個偶數(shù)數(shù)位上數(shù)字的和,則M≡Y-X或M≡11-(X-Y)(mod 11);

  五、費爾馬小定理:如果p是質(zhì)數(shù)(素數(shù)),a是自然數(shù),且a不能被p整除,則ap-1≡1(mod p)。

  15、分數(shù)與百分數(shù)的應用

  基本概念與性質(zhì):

  分數(shù):把單位“1”平均分成幾份,表示這樣的一份或幾份的數(shù)。

  分數(shù)的性質(zhì):分數(shù)的分子和分母同時乘以或除以相同的數(shù)(0除外),分數(shù)的大小不變。

  分數(shù)單位:把單位“1”平均分成幾份,表示這樣一份的數(shù)。

  百分數(shù):表示一個數(shù)是另一個數(shù)百分之幾的數(shù)。

  常用方法:

 、 反向思維方法:從題目提供條件的反方向(或結(jié)果)進行思考。

 、 對應思維方法:找出題目中具體的量與它所占的率的直接對應關系。

 、坜D(zhuǎn)化思維方法:把一類應用題轉(zhuǎn)化成另一類應用題進行解答。最常見的是轉(zhuǎn)換成比例和轉(zhuǎn)換成倍數(shù)關系;把不同的標準(在分數(shù)中一般指的是一倍量)下的分率轉(zhuǎn)化成同一條件下的分率。常見的處理方法是確定不同的標準為一倍量。

  ④假設思維方法:為了解題的方便,可以把題目中不相等的量假設成相等或者假設某種情況成立,計算出相應的結(jié)果,然后再進行調(diào)整,求出最后結(jié)果。

 、萘坎蛔兯季S方法:在變化的各個量當中,總有一個量是不變的,不論其他量如何變化,而這個量是始終固定不變的。有以下三種情況:A、分量發(fā)生變化,總量不變。B、總量發(fā)生變化,但其中有的分量不變。C、總量和分量都發(fā)生變化,但分量之間的差量不變化。

 、尢鎿Q思維方法:用一種量代替另一種量,從而使數(shù)量關系單一化、量率關系明朗化。

 、咄堵史ǎ嚎偭亢头至恐g按照同分率變化的規(guī)律進行處理。

  ⑧濃度配比法:一般應用于總量和分量都發(fā)生變化的狀況。

  16 、分數(shù)大小的比較

  基本方法:

  ①通分分子法:使所有分數(shù)的分子相同,根據(jù)同分子分數(shù)大小和分母的關系比較。

 、谕ǚ址帜阜ǎ菏顾蟹謹(shù)的分母相同,根據(jù)同分母分數(shù)大小和分子的關系比較。

 、刍鶞蕯(shù)法:確定一個標準,使所有的分數(shù)都和它進行比較。

 、芊肿雍头帜复笮”容^法:當分子和分母的差一定時,分子或分母越大的分數(shù)值越大。

 、荼堵时容^法:當比較兩個分子或分母同時變化時分數(shù)的大小,除了運用以上方法外,可以用同倍率的變化關系比較分數(shù)的大小。(具體運用見同倍率變化規(guī)律)

 、揶D(zhuǎn)化比較方法:把所有分數(shù)轉(zhuǎn)化成小數(shù)(求出分數(shù)的值)后進行比較。

 、弑稊(shù)比較法:用一個數(shù)除以另一個數(shù),結(jié)果得數(shù)和1進行比較。

 、啻笮”容^法:用一個分數(shù)減去另一個分數(shù),得出的數(shù)和0比較。

  ⑨倒數(shù)比較法:利用倒數(shù)比較大小,然后確定原數(shù)的大小。

 、饣鶞蕯(shù)比較法:確定一個基準數(shù),每一個數(shù)與基準數(shù)比較。

  17 、比和比例

  比:兩個數(shù)相除又叫兩個數(shù)的比。比號前面的數(shù)叫比的前項,比號后面的數(shù)叫比的后項。

  比值:比的前項除以后項的商,叫做比值。

  比的性質(zhì):比的前項和后項同時乘以或除以相同的數(shù)(零除外),比值不變。

  比例:表示兩個比相等的式子叫做比例。a:b=c:d或

  比例的性質(zhì):兩個外項積等于兩個內(nèi)項積(交叉相乘),ad=bc。

  正比例:若A擴大或縮小幾倍,B也擴大或縮小幾倍(AB的商不變時),則A與B成正比。

  反比例:若A擴大或縮小幾倍,B也縮小或擴大幾倍(AB的積不變時),則A與B成反比。

  比例尺:圖上距離與實際距離的比叫做比例尺。

  按比例分配:把幾個數(shù)按一定比例分成幾份,叫按比例分配。

  18 、綜合行程問題

  基本概念:行程問題是研究物體運動的,它研究的是物體速度、時間、路程三者之間的關系.

  基本公式:路程=速度×時間;路程÷時間=速度;路程÷速度=時間

  關鍵問題:確定運動過程中的位置和方向。

  相遇問題:速度和×相遇時間=相遇路程(請寫出其他公式)

  追及問題:追及時間=路程差÷速度差(寫出其他公式)

  流水問題:順水行程=(船速+水速)×順水時間

  逆水行程=(船速-水速)×逆水時間

  順水速度=船速+水速

  逆水速度=船速-水速

  靜水速度=(順水速度+逆水速度)÷2

  水 速=(順水速度-逆水速度)÷2

  流水問題:關鍵是確定物體所運動的速度,參照以上公式。

  過橋問題:關鍵是確定物體所運動的路程,參照以上公式。

  主要方法:畫線段圖法

  基本題型:已知路程(相遇路程、追及路程)、時間(相遇時間、追及時間)、速度(速度和、速度差)中任意兩個量,求第三個量。

  19 、工程問題

  基本公式:

 、俟ぷ骺偭=工作效率×工作時間

 、诠ぷ餍=工作總量÷工作時間

 、酃ぷ鲿r間=工作總量÷工作效率

  基本思路:

 、偌僭O工作總量為“1”(和總工作量無關);

 、诩僭O一個方便的數(shù)為工作總量(一般是它們完成工作總量所用時間的最小公倍數(shù)),利用上述三個基本關系,可以簡單地表示出工作效率及工作時間.

  關鍵問題:確定工作量、工作時間、工作效率間的兩兩對應關系。

  經(jīng)驗簡評:合久必分,分久必合。

  20 、邏輯推理問題

  基本方法簡介:

 、贄l件分析—假設法:假設可能情況中的一種成立,然后按照這個假設去判斷,如果有與題設條件矛盾的情況,說明該假設情況是不成立的,那么與他的相反情況是成立的。例如,假設a是偶數(shù)成立,在判斷過程中出現(xiàn)了矛盾,那么a一定是奇數(shù)。

 、跅l件分析—列表法:當題設條件比較多,需要多次假設才能完成時,就需要進行列表來輔助分析。列表法就是把題設的條件全部表示在一個長方形表格中,表格的行、列分別表示不同的對象與情況,觀察表格內(nèi)的題設情況,運用邏輯規(guī)律進行判斷。

 、蹢l件分析——圖表法:當兩個對象之間只有兩種關系時,就可用連線表示兩個對象之間的關系,有連線則表示“是,有”等肯定的狀態(tài),沒有連線則表示否定的狀態(tài)。例如A和B兩人之間有認識或不認識兩種狀態(tài),有連線表示認識,沒有表示不認識。

  ④邏輯計算:在推理的過程中除了要進行條件分析的推理之外,還要進行相應的計算,根據(jù)計算的結(jié)果為推理提供一個新的判斷篩選條件。

 、莺唵螝w納與推理:根據(jù)題目提供的特征和數(shù)據(jù),分析其中存在的規(guī)律和方法,并從特殊情況推廣到一般情況,并遞推出相關的關系式,從而得到問題的解決。

  21 、幾何面積

  基本思路:

  在一些面積的計算上,不能直接運用公式的情況下,一般需要對圖形進行割補,平移、旋轉(zhuǎn)、翻折、分解、變形、重疊等,使不規(guī)則的圖形變?yōu)橐?guī)則的圖形進行計算;另外需要掌握和記憶一些常規(guī)的面積規(guī)律。

  常用方法:

  1. 連輔助線方法

  2. 利用等底等高的兩個三角形面積相等。

  3. 大膽假設(有些點的設置題目中說的是任意點,解題時可把任意點設置在特殊位置上)。

  4. 利用特殊規(guī)律

  ①等腰直角三角形,已知任意一條邊都可求出面積。(斜邊的平方除以4等于等腰直角三角形的面積)

 、谔菪螌蔷連線后,兩腰部分面積相等。

 、蹐A的面積占外接正方形面積的78.5%。

  22 、時鐘問題—快慢表問題

  基本思路:

  1、按照行程問題中的思維方法解題;

  2、不同的表當成速度不同的運動物體;

  3、路程的單位是分格(表一周為60分格);

  4、時間是標準表所經(jīng)過的時間;

  5、合理利用行程問題中的比例關系。

  23 、時鐘問題—鐘面追及

  基本思路:封閉曲線上的追及問題。

  關鍵問題:

 、俅_定分針與時針的初始位置;

  ②確定分針與時針的路程差;

  基本方法:

 、俜指穹椒ǎ

  時鐘的鐘面圓周被均勻分成60小格,每小格我們稱為1分格。分針每小時走60分格,即一周;而時針只走5分格,故分針每分鐘走1分格,時針每分鐘走1/12分格。

  ②度數(shù)方法:

  從角度觀點看,鐘面圓周一周是360°,分針每分鐘轉(zhuǎn)360/60 度,即6°,時針每分鐘轉(zhuǎn)360/12*60度,即1/2 度。

  24 、濃度與配比

  經(jīng)驗總結(jié):在配比的過程中存在這樣的一個反比例關系,進行混合的兩種溶液的重量和他們濃度的變化成反比。

  溶質(zhì):溶解在其它物質(zhì)里的物質(zhì)(例如糖、鹽、酒精等)叫溶質(zhì)。

  溶劑:溶解其它物質(zhì)的物質(zhì)(例如水、汽油等)叫溶劑。

  溶液:溶質(zhì)和溶劑混合成的液體(例如鹽水、糖水等)叫溶液。

  基本公式:溶液重量=溶質(zhì)重量+溶劑重量;

  溶質(zhì)重量=溶液重量×濃度;

  濃度= ×100%= ×100%

  理論部分小練習:試推出溶質(zhì)、溶液、溶劑三者的其它公式。

  經(jīng)驗總結(jié):在配比的過程中存在這樣的一個反比例關系,進行混合的兩種溶液的重量和他們濃度的變化成反比。

  25 、經(jīng)濟問題

  利潤的百分數(shù)=(賣價-成本)÷成本×100%;

  賣價=成本×(1+利潤的百分數(shù));

  成本=賣價÷(1+利潤的百分數(shù));

  商品的定價按照期望的利潤來確定;

  定價=成本×(1+期望利潤的百分數(shù));

  本金:儲蓄的金額;

  利率:利息和本金的比;

  利息=本金×利率×期數(shù);

  含稅價格=不含稅價格×(1+增值稅稅率)。

  26 、簡單方程

  代數(shù)式:用運算符號(加減乘除)連接起來的字母或者數(shù)字。

  方程:含有未知數(shù)的等式叫方程。

  列方程:把兩個或幾個相等的代數(shù)式用等號連起來。

  列方程關鍵問題:用兩個以上的不同代數(shù)式表示同一個數(shù)。

  等式性質(zhì):等式兩邊同時加上或減去一個數(shù),等式不變;等式兩邊同時乘以或除以一個數(shù)(除0),等式不變。

  移項:把數(shù)或式子改變符號后從方程等號的一邊移到另一邊;

  移項規(guī)則:先移加減,后變乘除;先去大括號,再去中括號,最后去小括號。

  加去括號規(guī)則:在只有加減運算的算式里,如果括號前面是“+”號,則添、去括號,括號里面的運算符號都不變;如果括號前面是“-”號,添、去括號,括號里面的運算符號都要改變;括號里面的數(shù)前沒有“+”或“-”的,都按有“+”處理。

  移項關鍵問題:運用等式的性質(zhì),移項規(guī)則,加、去括號規(guī)則。

  乘法分配率:a(b+c)=ab+ac

  解方程步驟:①去分母;②去括號;③移項;④合并同類項;⑤求解;

  方程組:幾個二元一次方程組成的一組方程。

  解方程組的步驟:①消元;②按一元一次方程步驟。

  消元的方法:①加減消元;②代入消元。

  27 、循環(huán)小數(shù)

  一、把循環(huán)小數(shù)的小數(shù)部分化成分數(shù)的規(guī)則

 、偌冄h(huán)小數(shù)小數(shù)部分化成分數(shù):將一個循環(huán)節(jié)的數(shù)字組成的數(shù)作為分子,分母的各位都是9,9的個數(shù)與循環(huán)節(jié)的位數(shù)相同,最后能約分的再約分。

 、诨煅h(huán)小數(shù)小數(shù)部分化成分數(shù):分子是第二個循環(huán)節(jié)以前的小數(shù)部分的數(shù)字組成的數(shù)與不循環(huán)部分的數(shù)字所組成的數(shù)之差,分母的頭幾位數(shù)字是9,9的個數(shù)與一個循環(huán)節(jié)的位數(shù)相同,末幾位是0,0的個數(shù)與不循環(huán)部分的位數(shù)相同。

  二、分數(shù)轉(zhuǎn)化成循環(huán)小數(shù)的判斷方法:

 、僖粋最簡分數(shù),如果分母中既含有質(zhì)因數(shù)2和5,又含有2和5以外的質(zhì)因數(shù),那么這個分數(shù)化成的小數(shù)必定是混循環(huán)小數(shù)。

 、谝粋最簡分數(shù),如果分母中只含有2和5以外的質(zhì)因數(shù),那么這個分數(shù)化成的小數(shù)必定是純循環(huán)小數(shù)。


【小升初數(shù)學?贾R「」】相關文章:

小升初語文?贾R常識01-27

關于小升初語文數(shù)學外語?贾R點02-25

2017年小升初數(shù)學?贾R整理01-27

小升初語文?贾R點匯編02-01

2017小升初英語?贾R點07-16

2017小升初英語?颊Z法知識大全10-05

小升初英語五大常考知識點08-12

小升初英語常考的十大知識點01-24

小升初中外名著?贾R題(附答案)06-08