久久久久无码精品,四川省少妇一级毛片,老老熟妇xxxxhd,人妻无码少妇一区二区

整數(shù)和小數(shù)小升初數(shù)學(xué)必考知識(shí)點(diǎn)

時(shí)間:2022-04-21 14:49:35 小升初 我要投稿
  • 相關(guān)推薦

整數(shù)和小數(shù)小升初數(shù)學(xué)必考知識(shí)點(diǎn)

  在平時(shí)的學(xué)習(xí)中,大家都沒少背知識(shí)點(diǎn)吧?知識(shí)點(diǎn)就是一些?嫉膬(nèi)容,或者考試經(jīng)常出題的地方。你知道哪些知識(shí)點(diǎn)是真正對(duì)我們有幫助的嗎?以下是小編為大家收集的整數(shù)和小數(shù)小升初數(shù)學(xué)必考知識(shí)點(diǎn),歡迎閱讀,希望大家能夠喜歡。

整數(shù)和小數(shù)小升初數(shù)學(xué)必考知識(shí)點(diǎn)

  整數(shù)和小數(shù)小升初數(shù)學(xué)必考知識(shí)點(diǎn)1

  1.最小的一位數(shù)是1,最小的自然數(shù)是0。

  2.小數(shù)的.意義:把整數(shù)“1”平均分成10份、100份、1000份……這樣的一份或幾份分別是十分之幾、百分之幾、千分之幾……可以用小數(shù)來表示。

  3.小數(shù)點(diǎn)左邊依次是整數(shù)部分,小數(shù)點(diǎn)右邊是小數(shù)部分,依次是十分位、百分位、千分位……

  4.小數(shù)的分類:小數(shù)、有限小數(shù)、無限循環(huán)小數(shù)、無限小數(shù)、無限不循環(huán)小數(shù)、

  5.整數(shù)和小數(shù)都是按照十進(jìn)制計(jì)數(shù)法寫出的數(shù)。

  6.小數(shù)的性質(zhì):小數(shù)的末尾添上0或者去掉0,小數(shù)的大小不變。

  7.小數(shù)點(diǎn)向右移動(dòng)一位、二位、三位……原來的數(shù)分別擴(kuò)大10倍、100倍、1000倍……

  小數(shù)點(diǎn)向左移動(dòng)一位、二位、三位……原來的數(shù)分別縮小10倍、100倍、1000倍……

  整數(shù)和小數(shù)小升初數(shù)學(xué)必考知識(shí)點(diǎn)2

  1 簡單應(yīng)用題

  (1) 簡單應(yīng)用題:只含有一種基本數(shù)量關(guān)系,或用一步運(yùn)算解答的應(yīng)用題,通常叫做簡單應(yīng)用題。

  (2) 解題步驟:

  a 審題理解題意:了解應(yīng)用題的內(nèi)容,知道應(yīng)用題的條件和問題。讀題時(shí),不丟字不添字邊讀邊思考,弄明白題中每句話的意思。也可以復(fù)述條件和問題,幫助理解題意。

  b選擇算法和列式計(jì)算:這是解答應(yīng)用題的中心工作。從題目中告訴什么,要求什么著手,逐步根據(jù)所給的條件和問題,聯(lián)系四則運(yùn)算的含義,分析數(shù)量關(guān)系,確定算法,進(jìn)行解答并標(biāo)明正確的單位名稱。

  C檢驗(yàn):就是根據(jù)應(yīng)用題的條件和問題進(jìn)行檢查看所列算式和計(jì)算過程是否正確,是否符合題意。如果發(fā)現(xiàn)錯(cuò)誤,馬上改正。

  2 復(fù)合應(yīng)用題

  (1)有兩個(gè)或兩個(gè)以上的基本數(shù)量關(guān)系組成的,用兩步或兩步以上運(yùn)算解答的應(yīng)用題,通常叫做復(fù)合應(yīng)用題。

  (2)含有三個(gè)已知條件的兩步計(jì)算的應(yīng)用題。

  求比兩個(gè)數(shù)的和多(少)幾個(gè)數(shù)的應(yīng)用題。

  比較兩數(shù)差與倍數(shù)關(guān)系的應(yīng)用題。

  (3)含有兩個(gè)已知條件的兩步計(jì)算的應(yīng)用題。

  已知兩數(shù)相差多少(或倍數(shù)關(guān)系)與其中一個(gè)數(shù),求兩個(gè)數(shù)的和(或差)。

  已知兩數(shù)之和與其中一個(gè)數(shù),求兩個(gè)數(shù)相差多少(或倍數(shù)關(guān)系)。

  (4)解答連乘連除應(yīng)用題。

  (5)解答三步計(jì)算的應(yīng)用題。

  (6)解答小數(shù)計(jì)算的應(yīng)用題:小數(shù)計(jì)算的加法、減法、乘法和除法的應(yīng)用題,他們的數(shù)量關(guān)系、結(jié)構(gòu)、和解題方式都與正式應(yīng)用題基本相同,只是在已知數(shù)或未知數(shù)中間含有小數(shù)。

  d答案:根據(jù)計(jì)算的結(jié)果,先口答,逐步過渡到筆答。

  ( 3 ) 解答加法應(yīng)用題:

  a求總數(shù)的應(yīng)用題:已知甲數(shù)是多少,乙數(shù)是多少,求甲乙兩數(shù)的和是多少。

  b求比一個(gè)數(shù)多幾的數(shù)應(yīng)用題:已知甲數(shù)是多少和乙數(shù)比甲數(shù)多多少,求乙數(shù)是多少。

  (4 ) 解答減法應(yīng)用題:

  a求剩余的應(yīng)用題:從已知數(shù)中去掉一部分,求剩下的部分。

  -b求兩個(gè)數(shù)相差的多少的應(yīng)用題:已知甲乙兩數(shù)各是多少,求甲數(shù)比乙數(shù)多多少,或乙數(shù)比甲數(shù)少多少。

  c求比一個(gè)數(shù)少幾的數(shù)的應(yīng)用題:已知甲數(shù)是多少,,乙數(shù)比甲數(shù)少多少,求乙數(shù)是多少。

  (5 ) 解答乘法應(yīng)用題:

  a求相同加數(shù)和的應(yīng)用題:已知相同的加數(shù)和相同加數(shù)的個(gè)數(shù),求總數(shù)。

  b求一個(gè)數(shù)的幾倍是多少的應(yīng)用題:已知一個(gè)數(shù)是多少,另一個(gè)數(shù)是它的幾倍,求另一個(gè)數(shù)是多少。

  ( 6) 解答除法應(yīng)用題:

  a把一個(gè)數(shù)平均分成幾份,求每一份是多少的應(yīng)用題:已知一個(gè)數(shù)和把這個(gè)數(shù)平均分成幾份的,求每一份是多少。

  b求一個(gè)數(shù)里包含幾個(gè)另一個(gè)數(shù)的應(yīng)用題:已知一個(gè)數(shù)和每份是多少,求可以分成幾份。

  C 求一個(gè)數(shù)是另一個(gè)數(shù)的的幾倍的應(yīng)用題:已知甲數(shù)乙數(shù)各是多少,求較大數(shù)是較小數(shù)的幾倍。

  d已知一個(gè)數(shù)的幾倍是多少,求這個(gè)數(shù)的應(yīng)用題。

  (7)常見的數(shù)量關(guān)系:

  總價(jià)= 單價(jià)×數(shù)量

  路程= 速度×?xí)r間

  工作總量=工作時(shí)間×工效

  總產(chǎn)量=單產(chǎn)量×數(shù)量

  3典型應(yīng)用題

  具有獨(dú)特的結(jié)構(gòu)特征的和特定的解題規(guī)律的復(fù)合應(yīng)用題,通常叫做典型應(yīng)用題。

  (1)平均數(shù)問題:平均數(shù)是等分除法的發(fā)展。

  解題關(guān)鍵:在于確定總數(shù)量和與之相對(duì)應(yīng)的總份數(shù)。

  算術(shù)平均數(shù):已知幾個(gè)不相等的同類量和與之相對(duì)應(yīng)的份數(shù),求平均每份是多少。數(shù)量關(guān)系式:數(shù)量之和÷數(shù)量的個(gè)數(shù)=算術(shù)平均數(shù)。

  加權(quán)平均數(shù):已知兩個(gè)以上若干份的平均數(shù),求總平均數(shù)是多少。

  數(shù)量關(guān)系式 (部分平均數(shù)×權(quán)數(shù))的總和÷(權(quán)數(shù)的和)=加權(quán)平均數(shù)。

  差額平均數(shù):是把各個(gè)大于或小于標(biāo)準(zhǔn)數(shù)的部分之和被總份數(shù)均分,求的是標(biāo)準(zhǔn)數(shù)與各數(shù)相差之和的平均數(shù)。

  數(shù)量關(guān)系式:(大數(shù)-小數(shù))÷2=小數(shù)應(yīng)得數(shù)最大數(shù)與各數(shù)之差的和÷總份數(shù)=最大數(shù)應(yīng)給數(shù) 最大數(shù)與個(gè)數(shù)之差的.和÷總份數(shù)=最小數(shù)應(yīng)得數(shù)。

  例:一輛汽車以每小時(shí) 100 千米 的速度從甲地開往乙地,又以每小時(shí) 60 千米的速度從乙地開往甲地。求這輛車的平均速度。

  分析:求汽車的平均速度同樣可以利用公式。此題可以把甲地到乙地的路程設(shè)為“ 1 ”,則汽車行駛的總路程為“ 2 ”,從甲地到乙地的速度為 100 ,所用的時(shí)間為 ,汽車從乙地到甲地速度為 60 千米 ,所用的時(shí)間是 ,汽車共行的時(shí)間為 + = , 汽車的平均速度為 2 ÷ =75 (千米)

  (2) 歸一問題:已知相互關(guān)聯(lián)的兩個(gè)量,其中一種量改變,另一種量也隨之而改變,其變化的規(guī)律是相同的,這種問題稱之為歸一問題。

  根據(jù)求“單一量”的步驟的多少,歸一問題可以分為一次歸一問題,兩次歸一問題。

  根據(jù)球癡單一量之后,解題采用乘法還是除法,歸一問題可以分為正歸一問題,反歸一問題。

  一次歸一問題,用一步運(yùn)算就能求出“單一量”的歸一問題。又稱“單歸一!

  兩次歸一問題,用兩步運(yùn)算就能求出“單一量”的歸一問題。又稱“雙歸一!

  正歸一問題:用等分除法求出“單一量”之后,再用乘法計(jì)算結(jié)果的歸一問題。

  反歸一問題:用等分除法求出“單一量”之后,再用除法計(jì)算結(jié)果的歸一問題。

  解題關(guān)鍵:從已知的一組對(duì)應(yīng)量中用等分除法求出一份的數(shù)量(單一量),然后以它為標(biāo)準(zhǔn),根據(jù)題目的要求算出結(jié)果。

  數(shù)量關(guān)系式:單一量×份數(shù)=總數(shù)量(正歸一)

  總數(shù)量÷單一量=份數(shù)(反歸一)

  例 一個(gè)織布工人,在七月份織布 4774 米 , 照這樣計(jì)算,織布 6930 米 ,需要多少天?

  分析:必須先求出平均每天織布多少米,就是單一量。 693 0 ÷( 477 4 ÷ 31 ) =45 (天)

  (3)歸總問題:是已知單位數(shù)量和計(jì)量單位數(shù)量的個(gè)數(shù),以及不同的單位數(shù)量(或單位數(shù)量的個(gè)數(shù)),通過求總數(shù)量求得單位數(shù)量的個(gè)數(shù)(或單位數(shù)量)。

  特點(diǎn):兩種相關(guān)聯(lián)的量,其中一種量變化,另一種量也跟著變化,不過變化的規(guī)律相反,和反比例算法彼此相通。

  數(shù)量關(guān)系式:單位數(shù)量×單位個(gè)數(shù)÷另一個(gè)單位數(shù)量 = 另一個(gè)單位數(shù)量單位數(shù)量×單位個(gè)數(shù)÷另一個(gè)單位數(shù)量= 另一個(gè)單位數(shù)量。

  例 修一條水渠,原計(jì)劃每天修 800 米 , 6 天修完。實(shí)際 4 天修完,每天修了多少米?

  分析:因?yàn)橐蟪雒刻煨薜拈L度,就必須先求出水渠的長度。所以也把這類應(yīng)用題叫做“歸總問題”。不同之處是“歸一”先求出單一量,再求總量,歸總問題是先求出總量,再求單一量。 80 0 × 6 ÷ 4=1200 (米)

  (4) 和差問題:已知大小兩個(gè)數(shù)的和,以及他們的差,求這兩個(gè)數(shù)各是多少的應(yīng)用題叫做和差問題。

  解題關(guān)鍵:是把大小兩個(gè)數(shù)的和轉(zhuǎn)化成兩個(gè)大數(shù)的和(或兩個(gè)小數(shù)的和),然后再求另一個(gè)數(shù)。

  解題規(guī)律:(和+差)÷2 = 大數(shù)大數(shù)-差=小數(shù)

  (和-差)÷2=小數(shù)和-小數(shù)= 大數(shù)

  例 某加工廠甲班和乙班共有工人 94 人,因工作需要臨時(shí)從乙班調(diào) 46 人到甲班工作,這時(shí)乙班比甲班人數(shù)少 12 人,求原來甲班和乙班各有多少人?

  分析:從乙班調(diào) 46 人到甲班,對(duì)于總數(shù)沒有變化,現(xiàn)在把乙數(shù)轉(zhuǎn)化成 2 個(gè)乙班,即 9 4 - 12 ,由此得到現(xiàn)在的乙班是( 9 4 - 12 )÷ 2=41 (人),乙班在調(diào)出 46 人之前應(yīng)該為 41+46=87 (人),甲班為 9 4 - 87=7 (人)

  (5)和倍問題:已知兩個(gè)數(shù)的和及它們之間的倍數(shù) 關(guān)系,求兩個(gè)數(shù)各是多少的應(yīng)用題,叫做和倍問題。

  解題關(guān)鍵:找準(zhǔn)標(biāo)準(zhǔn)數(shù)(即1倍數(shù))一般說來,題中說是“誰”的幾倍,把誰就確定為標(biāo)準(zhǔn)數(shù)。求出倍數(shù)和之后,再求出標(biāo)準(zhǔn)的數(shù)量是多少。根據(jù)另一個(gè)數(shù)(也可能是幾個(gè)數(shù))與標(biāo)準(zhǔn)數(shù)的倍數(shù)關(guān)系,再去求另一個(gè)數(shù)(或幾個(gè)數(shù))的數(shù)量。

  解題規(guī)律:和÷倍數(shù)和=標(biāo)準(zhǔn)數(shù)標(biāo)準(zhǔn)數(shù)×倍數(shù)=另一個(gè)數(shù)

  例:汽車運(yùn)輸場(chǎng)有大小貨車 115 輛,大貨車比小貨車的 5 倍多 7 輛,運(yùn)輸場(chǎng)有大貨車和小汽車各有多少輛?

  分析:大貨車比小貨車的 5 倍還多 7 輛,這 7 輛也在總數(shù) 115 輛內(nèi),為了使總數(shù)與( 5+1 )倍對(duì)應(yīng),總車輛數(shù)應(yīng)( 115-7 )輛 。

  列式為( 115-7 )÷( 5+1 ) =18 (輛), 18 × 5+7=97 (輛)

  (6)差倍問題:已知兩個(gè)數(shù)的差,及兩個(gè)數(shù)的倍數(shù)關(guān)系,求兩個(gè)數(shù)各是多少的應(yīng)用題。

  解題規(guī)律:兩個(gè)數(shù)的差÷(倍數(shù)-1 )= 標(biāo)準(zhǔn)數(shù) 標(biāo)準(zhǔn)數(shù)×倍數(shù)=另一個(gè)數(shù)。

  例 甲乙兩根繩子,甲繩長 63 米 ,乙繩長 29 米 ,兩根繩剪去同樣的長度,結(jié)果甲所剩的長度是乙繩 長的 3 倍,甲乙兩繩所剩長度各多少米? 各減去多少米?

  分析:兩根繩子剪去相同的一段,長度差沒變,甲繩所剩的長度是乙繩的 3 倍,實(shí)比乙繩多( 3-1 )倍,以乙繩的長度為標(biāo)準(zhǔn)數(shù)。列式( 63-29 )÷( 3-1 ) =17 (米)…乙繩剩下的長度, 17 × 3=51 (米)…甲繩剩下的長度, 29-17=12 (米)…剪去的長度。

  (7)行程問題:關(guān)于走路、行車等問題,一般都是計(jì)算路程、時(shí)間、速度,叫做行程問題。解答這類問題首先要搞清楚速度、時(shí)間、路程、方向、杜速度和、速度差等概念,了解他們之間的關(guān)系,再根據(jù)這類問題的規(guī)律解答。

  解題關(guān)鍵及規(guī)律:

  同時(shí)同地相背而行:路程=速度和×?xí)r間。

  同時(shí)相向而行:相遇時(shí)間=速度和×?xí)r間

  同時(shí)同向而行(速度慢的在前,快的在后):追及時(shí)間=路程速度差。

  同時(shí)同地同向而行(速度慢的在后,快的在前):路程=速度差×?xí)r間。

  例 甲在乙的后面 28 千米 ,兩人同時(shí)同向而行,甲每小時(shí)行 16 千米 ,乙每小時(shí)行 9 千米 ,甲幾小時(shí)追上乙?

  分析:甲每小時(shí)比乙多行( 16-9 )千米,也就是甲每小時(shí)可以追近乙( 16-9 )千米,這是速度差。

  已知甲在乙的后面 28 千米 (追擊路程), 28 千米 里包含著幾個(gè)( 16-9 )千米,也就是追擊所需要的時(shí)間。列式 2 8 ÷ ( 16-9 ) =4 (小時(shí))

  (8)流水問題:一般是研究船在“流水”中航行的問題。它是行程問題中比較特殊的一種類型,它也是一種和差問題。它的特點(diǎn)主要是考慮水速在逆行和順行中的不同作用。

  船速:船在靜水中航行的速度。

  水速:水流動(dòng)的速度。

  順?biāo)俣龋捍樍骱叫械乃俣取?/p>

  逆水速度:船逆流航行的速度。

  順?biāo)?船速+水速

  逆速=船速-水速

  解題關(guān)鍵:因?yàn)轫樍魉俣仁谴倥c水速的和,逆流速度是船速與水速的差,所以流水問題當(dāng)作和差問題解答。 解題時(shí)要以水流為線索。

  解題規(guī)律:船行速度=(順?biāo)俣? 逆流速度)÷2

  流水速度=(順流速度逆流速度)÷2

  路程=順流速度× 順流航行所需時(shí)間

  路程=逆流速度×逆流航行所需時(shí)間

  例 一只輪船從甲地開往乙地順?biāo)校啃r(shí)行 28 千米 ,到乙地后,又逆水 航行,回到甲地。逆水比順?biāo)嘈?2 小時(shí),已知水速每小時(shí) 4 千米。求甲乙兩地相距多少千米?

  分析:此題必須先知道順?biāo)乃俣群晚標(biāo)枰臅r(shí)間,或者逆水速度和逆水的時(shí)間。已知順?biāo)俣群退?速度,因此不難算出逆水的速度,但順?biāo)玫臅r(shí)間,逆水所用的時(shí)間不知道,只知道順?biāo)饶嫠儆?2 小時(shí),抓住這一點(diǎn),就可以就能算出順?biāo)畯募椎氐揭业氐乃玫臅r(shí)間,這樣就能算出甲乙兩地的路程。列式為 284 × 2=20 (千米) 2 0 × 2 =40 (千米) 40 ÷( 4 × 2 ) =5 (小時(shí)) 28 × 5=140 (千米)。

  (9) 還原問題:已知某未知數(shù),經(jīng)過一定的四則運(yùn)算后所得的結(jié)果,求這個(gè)未知數(shù)的應(yīng)用題,我們叫做還原問題。

  解題關(guān)鍵:要弄清每一步變化與未知數(shù)的關(guān)系。

  解題規(guī)律:從最后結(jié)果 出發(fā),采用與原題中相反的運(yùn)算(逆運(yùn)算)方法,逐步推導(dǎo)出原數(shù)。

  根據(jù)原題的運(yùn)算順序列出數(shù)量關(guān)系,然后采用逆運(yùn)算的方法計(jì)算推導(dǎo)出原數(shù)。

  解答還原問題時(shí)注意觀察運(yùn)算的順序。若需要先算加減法,后算乘除法時(shí)別忘記寫括號(hào)。

  例 某小學(xué)三年級(jí)四個(gè)班共有學(xué)生 168 人,如果四班調(diào) 3 人到三班,三班調(diào) 6 人到二班,二班調(diào) 6 人到一班,一班調(diào) 2 人到四班,則四個(gè)班的人數(shù)相等,四個(gè)班原有學(xué)生多少人?

  分析:當(dāng)四個(gè)班人數(shù)相等時(shí),應(yīng)為 168 ÷ 4 ,以四班為例,它調(diào)給三班 3 人,又從一班調(diào)入 2 人,所以四班原有的人數(shù)減去 3 再加上 2 等于平均數(shù)。四班原有人數(shù)列式為 168 ÷ 4-2+3=43 (人)

  一班原有人數(shù)列式為 168 ÷ 4-6+2=38 (人);二班原有人數(shù)列式為 168 ÷ 4-6+6=42 (人) 三班原有人數(shù)列式為 168 ÷ 4-3+6=45 (人)。

  (10)植樹問題:這類應(yīng)用題是以“植樹”為內(nèi)容。凡是研究總路程、株距、段數(shù)、棵樹四種數(shù)量關(guān)系的應(yīng)用題,叫做植樹問題。

  解題關(guān)鍵:解答植樹問題首先要判斷地形,分清是否封閉圖形,從而確定是沿線段植樹還是沿周長植樹,然后按基本公式進(jìn)行計(jì)算。

  解題規(guī)律:沿線段植樹

  棵樹=段數(shù)+1棵樹=總路程÷株距+1

  株距=總路程÷(棵樹-1) 總路程=株距×(棵樹-1)

  沿周長植樹

  棵樹=總路程÷株距

  株距=總路程÷棵樹

  總路程=株距×棵樹

  例 沿公路一旁埋電線桿 301 根,每相鄰的兩根的間距是 50 米 。后來全部改裝,只埋了201 根。求改裝后每相鄰兩根的間距。

  分析:本題是沿線段埋電線桿,要把電線桿的根數(shù)減掉一。列式為 50 ×( 301-1 )÷( 201-1 ) =75 (米)

  (11 )盈虧問題:是在等分除法的基礎(chǔ)上發(fā)展起來的。 他的特點(diǎn)是把一定數(shù)量的物品,平均分配給一定數(shù)量的人,在兩次分配中,一次有余,一次不足(或兩次都有余),或兩次都不足),已知所余和不足的數(shù)量,求物品適量和參加分配人數(shù)的問題,叫做盈虧問題。

  解題關(guān)鍵:盈虧問題的解法要點(diǎn)是先求兩次分配中分配者沒份所得物品數(shù)量的差,再求兩次分配中各次共分物品的差(也稱總差額),用前一個(gè)差去除后一個(gè)差,就得到分配者的數(shù),進(jìn)而再求得物品數(shù)。

  解題規(guī)律:總差額÷每人差額=人數(shù)

  總差額的求法可以分為以下四種情況:

  第一次多余,第二次不足,總差額=多余+ 不足

  第一次正好,第二次多余或不足 ,總差額=多余或不足

  第一次多余,第二次也多余,總差額=大多余-小多余

  第一次不足,第二次也不足, 總差額= 大不足-小不足

  例 參加美術(shù)小組的同學(xué),每個(gè)人分的相同的支數(shù)的色筆,如果小組 10 人,則多 25 支,如果小組有 12 人,色筆多余 5 支。求每人 分得幾支?共有多少支色鉛筆?

  分析:每個(gè)同學(xué)分到的色筆相等。這個(gè)活動(dòng)小組有 12 人,比 10 人多 2 人,而色筆多出了( 25-5 ) =20 支 , 2 個(gè)人多出 20 支,一個(gè)人分得 10 支。列式為( 25-5 )÷( 12-10 ) =10 (支) 10 × 12+5=125 (支)。

  (12)年齡問題:將差為一定值的兩個(gè)數(shù)作為題中的一個(gè)條件,這種應(yīng)用題被稱為“年齡問題”。

  解題關(guān)鍵:年齡問題與和差、和倍、 差倍問題類似,主要特點(diǎn)是隨著時(shí)間的變化,年歲不斷增長,但大小兩個(gè)不同年齡的差是不會(huì)改變的,因此,年齡問題是一種“差不變”的問題,解題時(shí),要善于利用差不變的特點(diǎn)。

  例 父親 48 歲,兒子 21 歲。問幾年前父親的年齡是兒子的 4 倍?

  分析:父子的年齡差為 48-21=27 (歲)。由于幾年前父親年齡是兒子的 4 倍,可知父子年齡的倍數(shù)差是( 4-1 )倍。這樣可以算出幾年前父子的年齡,從而可以求出幾年前父親的年齡是兒子的 4 倍。列式為: 21( 48-21 )÷( 4-1 ) =12 (年)

  (13)雞兔問題:已知“雞兔”的總頭數(shù)和總腿數(shù)。求“雞”和“兔”各多少只的一類應(yīng)用題。通常稱為“雞兔問題”又稱雞兔同籠問題

  解題關(guān)鍵:解答雞兔問題一般采用假設(shè)法,假設(shè)全是一種動(dòng)物(如全是“雞”或全是“兔”,然后根據(jù)出現(xiàn)的腿數(shù)差,可推算出某一種的頭數(shù)。

  解題規(guī)律:(總腿數(shù)-雞腿數(shù)×總頭數(shù))÷一只雞兔腿數(shù)的差=兔子只數(shù)

  兔子只數(shù)=(總腿數(shù)-2×總頭數(shù))÷2

  如果假設(shè)全是兔子,可以有下面的式子:

  雞的只數(shù)=(4×總頭數(shù)-總腿數(shù))÷2

  兔的頭數(shù)=總頭數(shù)-雞的只數(shù)

  例 雞兔同籠共 50 個(gè)頭, 170 條腿。問雞兔各有多少只?

  兔子只數(shù) ( 170-2 × 50 )÷ 2 =35 (只)

  雞的只數(shù) 50-35=15 (只)

  整數(shù)和小數(shù)小升初數(shù)學(xué)必考知識(shí)點(diǎn)3

  1.分?jǐn)?shù)的意義:把單位“1”平均分成若干份,表示這樣的一份或幾份的數(shù)叫做分?jǐn)?shù)。

  2.分?jǐn)?shù)單位:把單位“1”平均分成若干份,表示其中一份的數(shù),叫做分?jǐn)?shù)單位。

  3.分?jǐn)?shù)和除法的聯(lián)系:分?jǐn)?shù)的'分子就是除法中的被除數(shù),分母就是除法中的除數(shù)。

  分?jǐn)?shù)和小數(shù)的聯(lián)系:小數(shù)實(shí)際上就是分母是10、100、1000……的分?jǐn)?shù)。

  分?jǐn)?shù)和比的聯(lián)系:分?jǐn)?shù)的分子就是比的前項(xiàng),分?jǐn)?shù)的分母就是比的后項(xiàng)。

  4.分?jǐn)?shù)的分類:分?jǐn)?shù)可以分為真分?jǐn)?shù)和假分?jǐn)?shù)。

  5.真分?jǐn)?shù):分子小于分母的分?jǐn)?shù)叫做真分?jǐn)?shù)。真分?jǐn)?shù)小于1。

  假分?jǐn)?shù):分子大于或等于分母的分?jǐn)?shù)叫做假分?jǐn)?shù)。假分?jǐn)?shù)大于或者等于1。

  6.最簡分?jǐn)?shù):分子與分母互質(zhì)的分?jǐn)?shù)叫做最簡分?jǐn)?shù)。

  7.分?jǐn)?shù)的基本性質(zhì):分?jǐn)?shù)的分子和分母同時(shí)乘或除以相同的數(shù)(零除外),分?jǐn)?shù)的大小不變。

  8.這樣的分?jǐn)?shù)可以化成有限小數(shù):前提是這

  個(gè)分?jǐn)?shù)要是最簡分?jǐn)?shù),如果分母只含有2、5這2個(gè)質(zhì)因數(shù),這樣的分?jǐn)?shù)就能化成有限小數(shù)。

  9.百分?jǐn)?shù):表示一個(gè)數(shù)是另一個(gè)數(shù)的百分之幾的數(shù)叫做百分?jǐn)?shù)。百分?jǐn)?shù)也叫做百分率或者百分比。百分?jǐn)?shù)通常用“%”來表示。

  整數(shù)和小數(shù)小升初數(shù)學(xué)必考知識(shí)點(diǎn)4

  升初數(shù)學(xué)運(yùn)算法則?贾R(shí)點(diǎn)

  運(yùn)算法則

  1. 整數(shù)加法計(jì)算法則:

  相同數(shù)位對(duì)齊,從低位加起,哪位上的數(shù)相加滿,就向前位進(jìn)。

  2. 整數(shù)減法計(jì)算法則:

  相同數(shù)位對(duì)齊,從低位加起,哪位上的數(shù)不夠減,就從它的前位退作,和本位上的數(shù)合并

  3. 整數(shù)乘法計(jì)算法則:

  先個(gè)因數(shù)每位上的數(shù)分別去乘另個(gè)因數(shù)各個(gè)數(shù)位上的數(shù),因數(shù)哪位上的數(shù)去乘,乘得的數(shù)的末尾就對(duì)齊哪位,然后把各次乘得的數(shù)加起來。

  4. 整數(shù)除法計(jì)算法則:

  先從被除數(shù)的位除起,除數(shù)是位數(shù),就看被除數(shù)的前位; 如果不夠除,就多看位,除到被除數(shù)的哪位,商就寫在哪位的上。如果哪位上不夠商1,要補(bǔ)“0”占位。每次除得的余數(shù)要于除數(shù)。

  5. 數(shù)乘法法則:

  先按照整數(shù)乘法的計(jì)算法則算出積,再看因數(shù)中共有位數(shù),就從積的右邊起數(shù)出位,點(diǎn)上數(shù)點(diǎn);如果位數(shù)不夠,就“0”補(bǔ)。

  6. 除數(shù)是整數(shù)的數(shù)除法計(jì)算法則:

  先按照整數(shù)除法的法則去除,商的數(shù)點(diǎn)要和被除數(shù)的數(shù)點(diǎn)對(duì)齊;如果除到被除數(shù)的末尾仍有余數(shù),就在余數(shù)后添“0”,再繼續(xù)除。

  7. 除數(shù)是數(shù)的除法計(jì)算法則:

  先移動(dòng)除數(shù)的數(shù)點(diǎn),使它變成整數(shù),除數(shù)的數(shù)點(diǎn)也向右移動(dòng)位(位數(shù)不夠的補(bǔ)“0”),然后按照除數(shù)是整數(shù)的除法法則進(jìn)計(jì)算。

  8. 同分母分?jǐn)?shù)加減法計(jì)算法:同分母分?jǐn)?shù)相加減,只把分相加減,分母不變。

  9. 異分母分?jǐn)?shù)加減法計(jì)算法:先通分,然后按照同分母分?jǐn)?shù)加減法的的法則進(jìn)計(jì)算。

  10. 帶分?jǐn)?shù)加減法的計(jì)算法:整數(shù)部分和分?jǐn)?shù)部分分別相加減,再把所得的數(shù)合并起來。

  11. 分?jǐn)?shù)乘法的計(jì)算法則:分?jǐn)?shù)乘整數(shù),分?jǐn)?shù)的`分和整數(shù)相乘的積作分,分母不變;分?jǐn)?shù)乘分?jǐn)?shù),分相乘的積作分,分母相乘的積作分母。

  12. 分?jǐn)?shù)除法的計(jì)算法則:甲數(shù)除以數(shù)(0除外),等于甲數(shù)乘數(shù)的倒數(shù)。升初數(shù)學(xué)整數(shù)和數(shù)的應(yīng)知識(shí)點(diǎn)整數(shù)和數(shù)的應(yīng)

  簡單應(yīng)題

  (1) 簡單應(yīng)題:只含有種基本數(shù)量關(guān)系,或步運(yùn)算解答的應(yīng)題,通常叫做簡單應(yīng)題。

  a 審題理解題意:了解應(yīng)題的內(nèi)容,知道應(yīng)題的條件和問題。讀題時(shí),不丟字不添字邊讀邊思考,弄明題中每句話的意思。也可以復(fù)述條件和問題,幫助理解題意。

  b選擇算法和列式計(jì)算:這是解答應(yīng)題的中作。從題中告訴什么,要求什么著,逐步根據(jù)所給的條件和問題,聯(lián)系四則運(yùn)算的含義,分析數(shù)量關(guān)系,確定算法,進(jìn)解答并標(biāo)明正確的單位名稱。

  C檢驗(yàn):就是根據(jù)應(yīng)題的條件和問題進(jìn)檢查看所列算式和計(jì)算過程是否正確,是否符合題意。如果發(fā)現(xiàn)錯(cuò)誤,馬上改正。

  2 復(fù)合應(yīng)題

  (1)有兩個(gè)或兩個(gè)以上的基本數(shù)量關(guān)系組成的,兩步或兩步以上運(yùn)算解答的應(yīng)題,通常叫做復(fù)合應(yīng)題。

  (2)含有三個(gè)已知條件的兩步計(jì)算的應(yīng)題。求兩個(gè)數(shù)的和多(少)個(gè)數(shù)的應(yīng)題。較兩數(shù)差與倍數(shù)關(guān)系的應(yīng)題。

  (3)含有兩個(gè)已知條件的兩步計(jì)算的應(yīng)題。已知兩數(shù)相差多少(或倍數(shù)關(guān)系)與其中個(gè)數(shù),求兩個(gè)數(shù)的和(或差)。已知兩數(shù)之和與其中個(gè)數(shù),求兩個(gè)數(shù)相差多少(或倍數(shù)關(guān)系)。

  (4)解答連乘連除應(yīng)題。

  (5)解答三步計(jì)算的應(yīng)題。

  (6)解答數(shù)計(jì)算的應(yīng)題:數(shù)計(jì)算的加法、減法、乘法和除法的應(yīng)題,他們的數(shù)量關(guān)系、結(jié)構(gòu)、和解題式都與正式應(yīng)題基本相同,只是在已知數(shù)或未知數(shù)中間含有數(shù)。

  (2) 解題步驟:

  d答案:根據(jù)計(jì)算的結(jié)果,先答,逐步過渡到筆答。

  ( 3 ) 解答加法應(yīng)題:

  a求總數(shù)的應(yīng)題:已知甲數(shù)是多少,數(shù)是多少,求甲兩數(shù)的和是多少。

  b求個(gè)數(shù)多的數(shù)應(yīng)題:已知甲數(shù)是多少和數(shù)甲數(shù)多多少,求數(shù)是多少。

  (4 ) 解答減法應(yīng)題:

  a求剩余的應(yīng)題:從已知數(shù)中去掉部分,求剩下的部分。

  b求兩個(gè)數(shù)相差的多少的應(yīng)題:已知甲兩數(shù)各是多少,求甲數(shù)數(shù)多多少,或數(shù)甲數(shù)少多少。

  c求個(gè)數(shù)少的數(shù)的應(yīng)題:已知甲數(shù)是多少,,數(shù)甲數(shù)少多少,求數(shù)是多少。

  (5 ) 解答乘法應(yīng)題:

  a求相同加數(shù)和的應(yīng)題:已知相同的加數(shù)和相同加數(shù)的個(gè)數(shù),求總數(shù)。

  b求個(gè)數(shù)的倍是多少的應(yīng)題:已知個(gè)數(shù)是多少,另個(gè)數(shù)是它的倍,求另個(gè)數(shù)是多少。

  ( 6) 解答除法應(yīng)題:

  a把個(gè)數(shù)平均分成份,求每份是多少的應(yīng)題:已知個(gè)數(shù)和把這個(gè)數(shù)平均分成份的,求每份是多少。

  b求個(gè)數(shù)包含個(gè)另個(gè)數(shù)的應(yīng)題:已知個(gè)數(shù)和每份是多少,求可以分成份。

  C 求個(gè)數(shù)是另個(gè)數(shù)的的倍的應(yīng)題:已知甲數(shù)數(shù)各是多少,求較數(shù)是較數(shù)的倍。

  d已知個(gè)數(shù)的倍是多少,求這個(gè)數(shù)的應(yīng)題。

  (7)常見的數(shù)量關(guān)系:

  總價(jià)= 單價(jià)×數(shù)量

  路程= 速度×?xí)r間

  作總量=作時(shí)間×效

  總產(chǎn)量=單產(chǎn)量×數(shù)量

【整數(shù)和小數(shù)小升初數(shù)學(xué)必考知識(shí)點(diǎn)】相關(guān)文章:

小升初數(shù)學(xué)整數(shù)和小數(shù)的應(yīng)用知識(shí)點(diǎn)04-06

小升初數(shù)學(xué)必考?碱}型匯總03-23

小升初數(shù)學(xué)約數(shù)與倍數(shù)知識(shí)點(diǎn)10-28

小升初必考英語作文(精選18篇)06-29

小升初必考文化常識(shí)試題及答案03-21

數(shù)的整除小升初數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)06-07

關(guān)于分?jǐn)?shù)的小升初數(shù)學(xué)知識(shí)點(diǎn)02-03

小升初數(shù)學(xué)倍數(shù)特征知識(shí)點(diǎn)的歸納整理08-28

小升初必考古詩詞匯總06-09