考研數(shù)學單選題和證明題的解題技巧
對于考研數(shù)學題海無邊,但題型是有限的。我們通過對典型題型的練習,掌握相應(yīng)的解題方法,能迅速提高解題能力,節(jié)省考場上的寶貴時間。在此為大家整理單選題和證明題經(jīng)典解題技巧,希望對大家有所幫助!
一、單選題巧解技巧總結(jié)為五種方法:
第一種:推演法。提示條件中給出一些條件或者一些數(shù)值,你很容易判斷,那這樣的題就用推演法去做。推演法實際上是一些計算題,簡單一點的計算題。那么我們從提示條件中往后推,推出哪個結(jié)果選擇哪個。
第二種:圖示法。像今年有一個考題,如果用圖示法做的話,三下五除二就把它做出來了,以往也有不少題用圖示法可以做。簡單講,對于那些容易畫出圖形來的,或者概率中兩個事件的問題那么用文氏圖來解決是非常好的辦法,這是第二種方法。
第三種:賦值法。給一個數(shù)值馬上可以判斷我們這種做法對不對,這個值可以加在給出的條件上,也可以加在被選的4個答案中的其中幾個上,我們加上去如果得出和我們題設(shè)的條件矛盾,或者是和我們已知的事實相矛盾。比方說2小于1就是明顯的錯誤,所以把這些排除了,排除掉3個最后一個肯定是正確的。
第四種:舉反例排除法。這是針對提示中給出的函數(shù)是抽象的函數(shù),抽象的對立面是具體,所以我們用具體的例子來核定,這個跟我們剛才的賦值法有某種相似之處。一般來講舉的范例是越簡單越好,而且很多考題你只要簡單的看就可以看出他的錯誤點。
第五種:類推。從最后被選的答案中往前推,推出哪個錯誤就把哪個否定掉,再換一個。我們推出3個錯誤最后一個肯定是正確的。后面三種方法有些相似之處,類推法這種方法是費時費力的,一般來講我們不太用。
總結(jié):經(jīng)常進行自我總結(jié),錯題總結(jié)能逐漸提高解題能力。大家可以在學完每一章后,自己通過畫圖的形式回憶這章有哪些知識點,有哪些定理,他們之間有些什么聯(lián)系,如何應(yīng)用等;對做錯的題分析一下原因:概念不清楚、定理用錯了還是計算粗心?數(shù)學思維方法是數(shù)學的精髓,只有對此進行歸納、領(lǐng)會、應(yīng)用,才能把數(shù)學知識與技能轉(zhuǎn)化為分析問題、解決問題的能力,使解題能力“更上一層樓”。
二、證明題總結(jié)為三大解題方法:
縱觀近十年考研數(shù)學真題會發(fā)現(xiàn):幾乎每一年的試題中都會有一個證明題,而且基本上都是應(yīng)用中值定理來解決問題的。但是要參加碩士入學數(shù)學統(tǒng)一考試的考生所學專業(yè)要么是理工要么是經(jīng)管,考生們在大學學習數(shù)學的時候?qū)τ谶壿嬐评矸矫娴挠柧毚蠖嗍遣粔虻,這就導(dǎo)致數(shù)學考試中遇到證明推理題就發(fā)怵,以致于簡單的證明題得分率卻極低。給大家簡單介紹一些解決數(shù)學證明題的入手點,希望對有此隱患的考生有所幫助。
1.結(jié)合幾何意義記住零點存在定理、中值定理、泰勒公式、極限存在的.兩個準則等基本原理,包括條件及結(jié)論。
知道基本原理是證明的基礎(chǔ),知道的程度(即就是對定理理解的深入程度)不同會導(dǎo)致不同的推理能力。如2006年數(shù)學一真題第16題(1)是證明極限的 存在性并求極限。只要證明了極限存在,求值是很容易的,但是如果沒有證明第一步,即使求出了極限值也是不能得分的。因為數(shù)學推理是環(huán)環(huán)相扣的,如果第一步未得到結(jié)論,那么第二步就是空中樓閣。這個題目非常簡單,只用了極限存在的兩個準則之一:單調(diào)有界數(shù)列必有極限。只要知道這個準則,該問題就能輕松解決,因為對于該題中的數(shù)列來說,“單調(diào)性”與“有界性”都是很好驗證的。像這樣直接可以利用基本原理的證明題并不是很多,更多的是要用到第二步。
2.借助幾何意義尋求證明思路
一個證明題,大多時候是能用其幾何意義來正確解釋的,當然最為基礎(chǔ)的是要正確理解題目文字的含義。如2007年數(shù)學一第19題是一個關(guān)于中值定理的證明題,可以在直角坐標系中畫出滿足題設(shè)條件的函數(shù)草圖,再聯(lián)系結(jié)論能夠發(fā)現(xiàn):兩個函數(shù)除兩個端點外還有一個函數(shù)值相等的點,那就是兩個函數(shù)分別取最大值的點(正確審題:兩個函數(shù)取得最大值的點不一定是同一個點)之間的一個點。這樣很容易想到輔助函數(shù)F(x)=f(x)-g(x)有三個零點,兩次應(yīng)用羅爾中值定理就能得到所證結(jié)論。再如2005年數(shù)學一第18題(1)是關(guān)于零點存在定理的證明題,只要在直角坐標系中結(jié)合所給條件作出函數(shù)y=f(x)及 y=1-x在[0,1]上的圖形就立刻能看到兩個函數(shù)圖形有交點,這就是所證結(jié)論,重要的是寫出推理過程。從圖形也應(yīng)該看到兩函數(shù)在兩個端點處大小關(guān)系恰好相反,也就是差函數(shù)在兩個端點的值是異號的,零點存在定理保證了區(qū)間內(nèi)有零點,這就證得所需結(jié)果。如果第二步實在無法完滿解決問題的話,轉(zhuǎn)第三步。
3.逆推法
從結(jié)論出發(fā)尋求證明方法。如2004年第15題是不等式證明題,該題只要應(yīng)用不等式證明的一般步驟就能解決問題:即從結(jié)論出發(fā)構(gòu)造函數(shù),利用函數(shù)的單調(diào)性推出結(jié)論。在判定函數(shù)的單調(diào)性時需借助導(dǎo)數(shù)符號與單調(diào)性之間的關(guān)系,正常情況只需一階導(dǎo)的符號就可判斷函數(shù)的單調(diào)性,非正常情況卻出現(xiàn)的更多(這里所 舉出的例子就屬非正常情況),這時需先用二階導(dǎo)數(shù)的符號判定一階導(dǎo)數(shù)的單調(diào)性,再用一階導(dǎo)的符號判定原來函數(shù)的單調(diào)性,從而得所要證的結(jié)果。該題中可設(shè) F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要證的不等式。
對于那些經(jīng)常使用如上方法的考生來說,利用三步走就能輕松收獲數(shù)學證明的12分,但對于從心理上就不自信能解決證明題的考生來說,卻常常輕易丟失12分,后一部分同學請按“證明三步走”來建立自信心,以阻止考試分數(shù)的白白流失。
最后提醒大家:強化階段大家應(yīng)把復(fù)習過的知識系統(tǒng)化綜合化,注意搞細搞透搞活,也可適當做幾套模擬題。數(shù)學題目千變?nèi)f化,有各種延伸或變式,考生們要在考試中取得好成績,一定要腳踏實地地復(fù)習,華而不實靠押題碰運氣是行不通的,多思多議,不斷地總結(jié)經(jīng)驗與教訓,做到融會貫通。
【考研數(shù)學單選題和證明題的解題技巧】相關(guān)文章:
考研數(shù)學復(fù)習單選與證明題經(jīng)典解題技巧08-29
考研數(shù)學證明題的解題步驟05-17
如何攻克考研數(shù)學證明題09-13
考研數(shù)學的解題技巧05-29
考研數(shù)學證明題知識點08-12
考研數(shù)學解題技巧05-22
考研政治單選題解題技巧08-25
考研數(shù)學證明題24個出題角度06-07
考研數(shù)學單選題的解題方法08-09