數(shù)學的手抄報相關內(nèi)容
數(shù)學是研究數(shù)量、結(jié)構(gòu)、變化、空間以及信息等概念的一門學科,從某種角度看屬于形式科學的一種。有關數(shù)學手抄報內(nèi)容,歡迎參考!
發(fā)展歷史
數(shù)學(漢語拼音:shù xué;希臘語:μαθηματικ;英語:Mathematics),源自于古希臘語的μθημα(máthēma),其有學習、學問、科學之意。古希臘學者視其為哲學之起點,“學問的基礎”。另外,還有個較狹隘且技術性的意義——“數(shù)學研究”。即使在其語源內(nèi),其形容詞意義凡與學習有關的,亦會被用來指數(shù)學的。
其在英語的復數(shù)形式,及在法語中的復數(shù)形式+es成mathématiques,可溯至拉丁文的中性復數(shù)(Mathematica),由西塞羅譯自希臘文復數(shù)τα μαθηματικ(ta mathēmatiká).
在中國古代,數(shù)學叫作算術,又稱算學,最后才改為數(shù)學.中國古代的算術是六藝之一(六藝中稱為“數(shù)”).
數(shù)學起源于人類早期的生產(chǎn)活動,古巴比倫人從遠古時代開始已經(jīng)積累了一定的數(shù)學知識,并能應用實際問題.從數(shù)學本身看,他們的數(shù)學知識也只是觀察和經(jīng)驗所得,沒有綜合結(jié)論和證明,但也要充分肯定他們對數(shù)學所做出的貢獻.
基礎數(shù)學的知識與運用是個人與團體生活中不可或缺的一部分.其基本概念的精煉早在古埃及、美索不達米亞及古印度內(nèi)的古代數(shù)學文本內(nèi)便可觀見.從那時開始,其發(fā)展便持續(xù)不斷地有小幅度的進展.但當時的代數(shù)學和幾何學長久以來仍處于獨立的狀態(tài).
代數(shù)學可以說是最為人們廣泛接受的“數(shù)學”.可以說每一個人從小時候開始學數(shù)數(shù)起,最先接觸到的數(shù)學就是代數(shù)學.而數(shù)學作為一個研究“數(shù)”的學科,代數(shù)學也是數(shù)學最重要的組成部分之一.幾何學則是最早開始被人們研究的數(shù)學分支.
直到16世紀的文藝復興時期,笛卡爾創(chuàng)立了解析幾何,將當時完全分開的代數(shù)和幾何學聯(lián)系到了一起.從那以后,我們終于可以用計算證明幾何學的定理;同時也可以用圖形來形象的表示抽象的代數(shù)方程.而其后更發(fā)展出更加精微的微積分.
現(xiàn)時數(shù)學已包括多個分支.創(chuàng)立于二十世紀三十年代的法國的布爾巴基學派則認為:數(shù)學,至少純數(shù)學,是研究抽象結(jié)構(gòu)的理論.結(jié)構(gòu),就是以初始概念和公理出發(fā)的演繹系統(tǒng).他們認為,數(shù)學有三種基本的母結(jié)構(gòu):代數(shù)結(jié)構(gòu)(群,環(huán),域,格……)、序結(jié)構(gòu)(偏序,全序……)、拓撲結(jié)構(gòu)(鄰域,極限,連通性,維數(shù)……).
數(shù)學被應用在很多不同的領域上,包括科學、工程、醫(yī)學和經(jīng)濟學等.數(shù)學在這些領域的應用一般被稱為應用數(shù)學,有時亦會激起新的數(shù)學發(fā)現(xiàn),并促成全新數(shù)學學科的發(fā)展.數(shù)學家也研究純數(shù)學,也就是數(shù)學本身,而不以任何實際應用為目標.雖然有許多工作以研究純數(shù)學為開端,但之后也許會發(fā)現(xiàn)合適的應用.
具體的,有用來探索由數(shù)學核心至其他領域上之間的連結(jié)的子領域:由邏輯、集合論(數(shù)學基礎)、至不同科學的經(jīng)驗上的數(shù)學(應用數(shù)學)、以較近代的對于不確定性的研究(混沌、模糊數(shù)學).
就縱度而言,在數(shù)學各自領域上的探索亦越發(fā)深入.
定義
亞里士多德把數(shù)學定義為“數(shù)量科學”,這個定義直到18世紀。從19世紀開始,數(shù)學研究越來越嚴格,開始涉及與數(shù)量和量度無明確關系的群論和投影幾何等抽象主題,數(shù)學家和哲學家開始提出各種新的定義。這些定義中的一些強調(diào)了大量數(shù)學的演繹性質(zhì),一些強調(diào)了它的抽象性,一些強調(diào)數(shù)學中的某些話題。今天,即使在專業(yè)人士中,對數(shù)學的定義也沒有達成共識。數(shù)學是否是藝術或科學,甚至沒有一致意見。許多專業(yè)數(shù)學家對數(shù)學的定義不感興趣,或者認為它是不可定義的。有些只是說,“數(shù)學是數(shù)學家做的。”
數(shù)學定義的三個主要類型被稱為邏輯學家,直覺主義者和形式主義者,每個都反映了不同的哲學思想學派。都有嚴重的問題,沒有人普遍接受,沒有和解似乎是可行的。
數(shù)學邏輯的早期定義是本杰明·皮爾士(Benjamin Peirce)的“得出必要結(jié)論的科學”(1870)。在Principia Mathematica,Bertrand Russell和Alfred North Whitehead提出了被稱為邏輯主義的哲學程序,并試圖證明所有的數(shù)學概念,陳述和原則都可以用符號邏輯來定義和證明。數(shù)學的邏輯學定義是羅素的“所有數(shù)學是符號邏輯”(1903)。
直覺主義定義,從數(shù)學家L.E.J. Brouwer,識別具有某些精神現(xiàn)象的數(shù)學。直覺主義定義的一個例子是“數(shù)學是一個接著一個進行構(gòu)造的心理活動”。直觀主義的特點是它拒絕根據(jù)其他定義認為有效的一些數(shù)學思想。特別是,雖然其他數(shù)學哲學允許可以被證明存在的對象,即使它們不能被構(gòu)造,但直覺主義只允許可以實際構(gòu)建的數(shù)學對象。
正式主義定義用其符號和操作規(guī)則來確定數(shù)學。 Haskell Curry將數(shù)學簡單地定義為“正式系統(tǒng)的科學”。[33]正式系統(tǒng)是一組符號,或令牌,還有一些規(guī)則告訴令牌如何組合成公式。在正式系統(tǒng)中,公理一詞具有特殊意義,與“不言而喻的真理”的普通含義不同。在正式系統(tǒng)中,公理是包含在給定的正式系統(tǒng)中的令牌的組合,而不需要使用系統(tǒng)的規(guī)則導出。
【數(shù)學的手抄報相關內(nèi)容】相關文章:
重陽節(jié)手抄報相關內(nèi)容06-21
小學生勵志手抄報相關內(nèi)容07-04
春節(jié)手抄報相關內(nèi)容06-27