哥德巴赫猜想的發(fā)展
數(shù)學界三大難題之一——哥德巴赫猜想
哥德巴赫是德國一位中學教師,也是一位著名的數(shù)學家,生于1690年,1725年當選為俄國彼得堡科學院院士。1742年,哥德巴赫在教學中發(fā)現(xiàn),每個不小于6的偶數(shù)都是兩個素數(shù)(只能被和它本身整除的數(shù))之和。如6=3+3,12=5+7等等。
公元1742年6月7日哥德巴赫(Goldbach)寫信給當時的大數(shù)學家歐拉(Euler),提出了以下的猜想: (a) 任何一個>=6之偶數(shù),都可以表示成兩個奇質(zhì)數(shù)之和。
(b) 任何一個>=9之奇數(shù),都可以表示成三個奇質(zhì)數(shù)之和。
這就是著名的哥德巴赫猜想。歐拉在6月30日給他的回信中說,他相信這個猜想是正確的,但他不能證明。敘述如此簡單的問題,連歐拉這樣首屈一指的數(shù)學家都不能證明,這個猜想便引起了許多數(shù)學家的注意。從費馬提出這個猜想至今,許多數(shù)學家都不斷努力想攻克它,但都沒有成功。當然曾經(jīng)有人作了些具體的驗證工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, . . . . 等等。有人對33×108以內(nèi)且大過6之偶數(shù)一一進行驗算,哥德巴赫猜想(a)都成立。但驗格的數(shù)學證明尚待數(shù)學家的努力。
從此,這道著名的數(shù)學難題引起了世界上成千上萬數(shù)學家的注意。200年過去了,沒有人證明它。哥德巴赫猜想由此成為數(shù)學皇冠上一顆可望不可及的"明珠"。到了20世紀20年代,才有人開始向它靠近。1920年、挪威數(shù)學家布爵用一種古老的篩選法證明,得出了一個結(jié)論:每一個比大的偶數(shù)都可以表示為(99)。這種縮小包圍圈的辦法很管用,科學家們于是從(9十9)開始,逐步減少每個數(shù)里所含質(zhì)數(shù)因子的個數(shù),直到最后使每個數(shù)里都是一個質(zhì)數(shù)為止,這樣就證明了"哥德巴赫"。
目前最佳的結(jié)果是中國數(shù)學家陳景潤於1966年證明的,稱為陳氏定理(Chen’s Theorem) ? "任何充份大的偶數(shù)都是一個質(zhì)數(shù)與一個自然數(shù)之和,而後者僅僅是兩個質(zhì)數(shù)的乘積。" 通常都簡稱這個結(jié)果為大偶數(shù)可表示為 "1 + 2 "的形式。
在陳景潤之前,關(guān)於偶數(shù)可表示為 s個質(zhì)數(shù)的乘積 與t個質(zhì)數(shù)的乘積之和(簡稱"s + t "問題)之進展情況如下:
1920年,挪威的布朗(Brun)證明了 "9 + 9 "。
1924年,德國的拉特馬赫(Rademacher)證明了"7 + 7 "。
1932年,英國的埃斯特曼(Estermann)證明了 "6 + 6 "。
1937年,意大利的蕾西(Ricei)先後證明了"5 + 7 ", "4 + 9 ", "3 + 15 "和"2 + 366 "。
1938年,蘇聯(lián)的布赫 夕太勃(Byxwrao)證明了"5 + 5 "。
1940年,蘇聯(lián)的布赫 夕太勃(Byxwrao)證明了 "4 + 4 "。
1948年,匈牙利的瑞尼(Renyi)證明了"1 + c ",其中c是一很大的自然 數(shù)。
1956年,中國的王元證明了 "3 + 4 "。
1957年,中國的王元先后證明了 "3 + 3 "和 "2 + 3 "。
1962年,中國的潘承洞和蘇聯(lián)的巴爾巴恩(BapoaH)證明了 "1 + 5 ", 中國的王元證明了"1 + 4 "。
1965年,蘇聯(lián)的布赫 夕太勃(Byxwrao)和小維諾格拉多夫(BHHopappB),及 意大利的朋比利(Bombieri)證明了"1 + 3 "。
1966年,中國的陳景潤證明了 "1 + 2 "。
最終會由誰攻克 "1 + 1 "這個難題呢?現(xiàn)在還沒法預(yù)測。
哥德巴赫猜想被稱為“數(shù)學皇冠上的明珠”,無數(shù)數(shù)學家為了攻克這一難關(guān)進行了許多努力,甚至是為之奮斗終生。雖然哥德巴赫猜想現(xiàn)在尚未被解決;但是,在這250余年來的解題過程中卻誕生了許許多多的數(shù)學方法,這為解決其他的數(shù)學問題提供了有力的幫助。從這個角度來看,哥德巴赫猜想的實際意義已經(jīng)遠遠超過證明一個數(shù)學命題的本身了。
分享數(shù)學學習小貼士
數(shù)學學習有三寶:預(yù)習、聽課加復習,只要按照三步走,成績絕對差不了。
1.快速預(yù)習做鋪墊。在每節(jié)課之前,快速預(yù)習是一個切實有效的普遍做法。預(yù)習能使你在課堂上抓住自己不會的地方有所突破,課下你會覺得輕松愉快
2.認真聽講是基礎(chǔ)。凡是學習態(tài)度端正的學生,在課堂上都會高度集中精力,認真聽講。每一個老師都會在課堂上把每個重點內(nèi)容講述或點撥得相當透徹,因此集中精力認真聽課將會使學習取得事半功倍的效果。
3.全面復習做鞏固。課后一定要復習,強調(diào)循環(huán)往復的復習,只有循環(huán)記憶和復習,才能把知識學習得扎實、牢固。
這三個環(huán)節(jié)你都做到并養(yǎng)成習慣了嗎?從現(xiàn)在開始親身踐行,好的學習習慣和方法將讓你受益匪哦。
中考數(shù)學復習技巧:選好模仿題很重要
初三學生已經(jīng)開學兩個月左右,學生開始面臨中考的壓力,在所有學科中,很多學生最擔心的就是數(shù)學成績的提高,不少學生早早的開始了中考數(shù)學的復習。但如何讓中考數(shù)學復習能夠有效果呢?復習可以通過掌握以下幾個關(guān)鍵,來提升自己的成績。
一、模擬訓練關(guān)鍵是選好模擬試題,要按照初中畢業(yè)生學業(yè)考試說明要求,結(jié)合中考數(shù)學試卷的結(jié)構(gòu)特點和命題趨勢,選擇真正具有模擬性的模擬試題。時間的安排,題量的多少,低、中、高檔題的比例,總體難度的控制等都要符合中考要求。
二、模擬測試后,要及時對答案,趁熱打鐵,有利于及時查漏補缺,復習效果明顯提高。同事要對自己做的卷子評分,嚴格按照中考評分要求,以便掌握自身的復習水平。
三、留給自己一定的糾錯和消化時間。教師講過的內(nèi)容,要整理下來;教師沒講的自己解錯的題要糾錯;與之相關(guān)的基礎(chǔ)知識要再記憶再鞏固。
四、適當?shù)?ldquo;解放”,特別是在時間安排上。經(jīng)過一段時間的考、考、考,幾乎所有的學生心身都會感到疲勞,如果把這種疲勞的狀態(tài)帶進中考考場,那肯定是個較差的結(jié)果。但要注意,解放不是放松,必須保證有個適度緊張的精神狀態(tài)。實踐證明,適度緊張是正;蛘叱0l(fā)揮的最佳狀態(tài)。調(diào)節(jié)的生物鐘,盡量把學習、思考的時間調(diào)整得與中考答卷時間相吻合,關(guān)注的心態(tài)和信心調(diào)整,此時此刻學生的信心的作用變?yōu)榱俗畲蟆?