算術(shù)平方根
一般地,若一個(gè)正數(shù)的平方等于a,即x²=a,則這個(gè)數(shù)叫做a的算術(shù)平方根。
舉例
9的平方根為±3 ;9的算術(shù)平方根為3,正數(shù)的平方根都是前面加±,算術(shù)平方根全部都是非負(fù)數(shù)(0也在內(nèi),)
算術(shù)平方根和平方根是大家學(xué)習(xí)實(shí)數(shù)接觸最多的概念,兩者密不可分?蓪(duì)于初學(xué)者來(lái)說(shuō)是對(duì)“孿生殺手”,很容易在解題過(guò)程中產(chǎn)生錯(cuò)誤。算術(shù)平方根和平方根到底有哪些區(qū)別與聯(lián)系呢?
區(qū)別
1、定義不同:
、沤^大部分地,如果一個(gè)正數(shù)x的平方等于a,即,那么這個(gè)正數(shù)x叫做a的算術(shù)平方根(arithmetic square root)。
、埔话愕,如果一個(gè)數(shù)的平方等于a,那么這個(gè)數(shù)叫做a的平方根或二次方根(square root)。這就是說(shuō), 如果,那么x叫做a的平方根。
2、表示方法不同:
、臿的算術(shù)平方根記為,讀作“根號(hào)a”,a叫做被開方數(shù)(radicand)。
、芶的平方根記為,讀作“正負(fù)根號(hào)a”,其中a叫做被開方數(shù)。
3、個(gè)數(shù)不同:從形式上看,二者的符號(hào)主體相似,但是一個(gè)數(shù)的平方根要在其算術(shù)平方根的前面寫上“±”。這也正好說(shuō)明了一個(gè)正數(shù)和零的算術(shù)平方根有且只有一個(gè),而一個(gè)正數(shù)卻有兩個(gè)互為相反數(shù)的平方根。零只有一個(gè)平方根。
聯(lián)系
1、前提條件相同:算術(shù)平方根和平方根存在的前提條件都是“只有非負(fù)數(shù)才有算術(shù)平方根和平方根”。
2、存在包容關(guān)系:平方根包含了算術(shù)平方根,因?yàn)橐粋(gè)正數(shù)的算術(shù)平方根只是其兩個(gè)平方根中的一個(gè)。
3、0的算術(shù)平方根和平方根相同,都是0。