久久久久无码精品,四川省少妇一级毛片,老老熟妇xxxxhd,人妻无码少妇一区二区

數(shù)學手抄報資料:哥德巴赫猜想的發(fā)展

發(fā)布時間:2017-10-27 編輯:1041

  哥德巴赫是德國一位中學教師,也是一位著名的數(shù)學家,生于1690年,1725年當選為俄國彼得堡科學院院士。1742年,哥德巴赫在教學中發(fā)現(xiàn),每個不小于6的偶數(shù)都是兩個素數(shù)(只能被和它本身整除的數(shù))之和。如6=3+3,12=5+7等等。

  公元1742年6月7日哥德巴赫(Goldbach)寫信給當時的大數(shù)學家歐拉(Euler),提出了以下的猜想: (a) 任何一個>=6之偶數(shù),都可以表示成兩個奇質(zhì)數(shù)之和。

  (b) 任何一個>=9之奇數(shù),都可以表示成三個奇質(zhì)數(shù)之和。

  這就是著名的哥德巴赫猜想。歐拉在6月30日給他的回信中說,他相信這個猜想是正確的,但他不能證明。敘述如此簡單的問題,連歐拉這樣首屈一指的數(shù)學家都不能證明,這個猜想便引起了許多數(shù)學家的注意。從費馬提出這個猜想至今,許多數(shù)學家都不斷努力想攻克它,但都沒有成功。當然曾經(jīng)有人作了些具體的驗證工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, . . . . 等等。有人對33×108以內(nèi)且大過6之偶數(shù)一一進行驗算,哥德巴赫猜想(a)都成立。但驗格的數(shù)學證明尚待數(shù)學家的努力。

  從此,這道著名的數(shù)學難題引起了世界上成千上萬數(shù)學家的注意。200年過去了,沒有人證明它。哥德巴赫猜想由此成為數(shù)學皇冠上一顆可望不可及的"明珠"。到了20世紀20年代,才有人開始向它靠近。1920年、挪威數(shù)學家布爵用一種古老的篩選法證明,得出了一個結(jié)論:每一個比大的偶數(shù)都可以表示為(99)。這種縮小包圍圈的辦法很管用,科學家們于是從(9十9)開始,逐步減少每個數(shù)里所含質(zhì)數(shù)因子的個數(shù),直到最后使每個數(shù)里都是一個質(zhì)數(shù)為止,這樣就證明了"哥德巴赫"。

  目前最佳的結(jié)果是中國數(shù)學家陳景潤於1966年證明的,稱為陳氏定理(Chen’s Theorem) ? "任何充份大的偶數(shù)都是一個質(zhì)數(shù)與一個自然數(shù)之和,而後者僅僅是兩個質(zhì)數(shù)的乘積。" 通常都簡稱這個結(jié)果為大偶數(shù)可表示為 "1 + 2 "的形式。

  在陳景潤之前,關(guān)於偶數(shù)可表示為 s個質(zhì)數(shù)的乘積 與t個質(zhì)數(shù)的乘積之和(簡稱"s + t "問題)之進展情況如下:

  1920年,挪威的布朗(Brun)證明了 "9 + 9 "。

  1924年,德國的拉特馬赫(Rademacher)證明了"7 + 7 "。

  1932年,英國的埃斯特曼(Estermann)證明了 "6 + 6 "。

  1937年,意大利的蕾西(Ricei)先後證明了"5 + 7 ", "4 + 9 ", "3 + 15 "和"2 + 366 "。

  1938年,蘇聯(lián)的布赫 夕太勃(Byxwrao)證明了"5 + 5 "。

  1940年,蘇聯(lián)的布赫 夕太勃(Byxwrao)證明了 "4 + 4 "。

  1948年,匈牙利的瑞尼(Renyi)證明了"1 + c ",其中c是一很大的自然 數(shù)。

  1956年,中國的王元證明了 "3 + 4 "。

  1957年,中國的王元先后證明了 "3 + 3 "和 "2 + 3 "。

  1962年,中國的潘承洞和蘇聯(lián)的巴爾巴恩(BapoaH)證明了 "1 + 5 ", 中國的王元證明了"1 + 4 "。

  1965年,蘇聯(lián)的布赫 夕太勃(Byxwrao)和小維諾格拉多夫(BHHopappB),及 意大利的朋比利(Bombieri)證明了"1 + 3 "。

  1966年,中國的陳景潤證明了 "1 + 2 "。

  最終會由誰攻克 "1 + 1 "這個難題呢?現(xiàn)在還沒法預測。

  哥德巴赫猜想被稱為“數(shù)學皇冠上的明珠”,無數(shù)數(shù)學家為了攻克這一難關(guān)進行了許多努力,甚至是為之奮斗終生。雖然哥德巴赫猜想現(xiàn)在尚未被解決;但是,在這 250余年來的解題過程中卻誕生了許許多多的數(shù)學方法,這為解決其他的數(shù)學問題提供了有力的幫助。從這個角度來看,哥德巴赫猜想的實際意義已經(jīng)遠遠超過證明一個數(shù)學命題的本身了。

欄目推薦
最新推薦
熱門推薦