- 相關(guān)推薦
初中數(shù)學說課稿《多邊形的內(nèi)角和》
我說課的內(nèi)容是人教版七年級(下)冊第七章第三節(jié)《多邊形及其內(nèi)角和》的第二課時。我將在新課程理念的指導下從以下七個方面進行說課。
一、教材分析
多邊形的內(nèi)角和是在三角形內(nèi)角和知識基礎(chǔ)上的拓廣和發(fā)展,是從特殊到一般的深化,是后面學習多邊形鑲嵌的基礎(chǔ),也是今后學習空間幾何的基礎(chǔ),學好多邊形內(nèi)角和的內(nèi)容,為學生認識探索客觀世界中不同形狀物體存在的一般規(guī)律打下基礎(chǔ),對發(fā)展學生的空間觀念和幾何直覺有很大的幫助。
二、學情分析
1、我所任教的班級,大部分學生來自農(nóng)村,由于自小獨立性較強,具有較強的理解能力和應(yīng)用能力,喜歡合作討論,對數(shù)學學習有較濃厚的興趣。大部分學生學習習慣和學習方式較好。
2、本節(jié)課讓學生通過實驗探索多邊形內(nèi)角和公式。在此之前學生對三角形、特殊四邊形的內(nèi)角和已經(jīng)有了一定的理解和認識。估計學生在探究任意四邊形內(nèi)角和時會想到量、拼、分的方法,但是分割“多邊形為三角形”這一過程會是學生學習的難點,在探究的過程中教師要想辦法把難點分散,有利于學生對本課知識的學習和掌握。
三、教學目標分析
新的課程標準注重學生經(jīng)歷觀察、操作、猜想、歸納等探索過程。根據(jù)新課標和本節(jié)課的內(nèi)容特點我確定以下教學目標及重點、難點。
【知識與技能】
掌握多邊形的內(nèi)角和公式,并能熟練運用。
【數(shù)學思考】
(1)通過測量,類比,推理等教學活動,探索多邊形的內(nèi)角和公式,感受數(shù)學思考過程的條理性,發(fā)展推理能力和語言表達能力。
(2)通過把多邊形轉(zhuǎn)化成三角形體會轉(zhuǎn)化思想在幾何中的運用,同時讓學生體會從特殊到一般的認識問題的方法。
【解決問題】
通過探索多邊形內(nèi)角和公式,讓學生嘗試從不同的角度尋求解決問題的方法,并能有效的解決問題。
【情感態(tài)度】
1、通過動手實踐、相互間的交流,進一步激發(fā)學習熱情和求知欲望。
2、體驗猜想得到證實的成就感,在解題中感受生活中數(shù)學的存在,體驗數(shù)學充滿探索。并在探索過程中激發(fā)、培養(yǎng)學生的愛國主義熱情。
基于以上教學目標,我確定以下教學重難點:
【教學重點】探索多邊形的內(nèi)角和公式。
【教學難點】探究多邊形內(nèi)角和時,如何把多邊形轉(zhuǎn)化成三角形。
因此,本節(jié)課我借助課件輔助教學,可以更好的突破重難點,增強直觀效果,豐富學生的感性認識,提高課堂效率。
四、教法和學法分析
本節(jié)課借鑒了美國教育家杜威的“在做中學”的理論和葉圣陶先生所倡導的“解放學生的手,解放學生的大腦,解放學生的時間”的思想,我確定如下教法和學法:
1.教學方法:
根據(jù)本節(jié)課的教學目標、教材內(nèi)容以及學生的認知特點,我采用啟發(fā)式、探索式教學方法,意在幫助學生通過觀察,自己動手,從實踐中獲得知識。整個探究學習的過程充滿了師生之間、學生之間的交流和互動,體現(xiàn)了教師是教學活動的組織者、引導者,而學生才是學習的主體。
2.學習方法:
利用學生的好奇心設(shè)疑,解疑,組織活潑互動、有效的教學活動,鼓勵學生積極參與,大膽猜想,使學生在自主探索和合作交流中理解和掌握本節(jié)課的內(nèi)容。
五、說教學流程
1、環(huán)節(jié)一:創(chuàng)設(shè)情景、引入新課
情景:請學生觀察“上海世博園”的宣傳視頻。
從 “情境認知理論”得知:圖文加情境能有效提高課堂教學效率,而圖文和情境并用可使效率提高到300%。通過觀看上海世博園視頻,能激發(fā)學生的愛國主義熱情,并引導學生大膽提出問題,對建筑物的外觀抽象成已知的三角形、長方形、正方形等多邊形。提出問題:三角形的內(nèi)角和是多少?設(shè)計這個問題的目的是因為探索多邊形內(nèi)角和與邊數(shù)關(guān)系的根本方法是把多邊形轉(zhuǎn)化為多個三角形,因此喚醒學生已有知識“三角形內(nèi)角和等于180°”有助于解決后面的問題。接下來提出問題,正方形、長方形的內(nèi)角和是多少?學生回答后進入新課內(nèi)容,根據(jù)三角形的內(nèi)角和是個確定值,引導學生猜想任意四邊形的內(nèi)角和是多少?喚醒學生已有知識,將有助于本堂課問題的解決,也為后面習題作鋪墊。
2、環(huán)節(jié)二:合作交流、探索新知。
活動1:
猜一猜:圍繞“任意四邊形的內(nèi)角和等于多少度?”這一問題引導學生從正方形、長方形這兩個特殊的多邊形的內(nèi)角和,很容易猜測出四邊形的內(nèi)角和等于360度。
議一議:你是怎樣得到的?你能找到幾種方法?這個環(huán)節(jié)學生可能出現(xiàn)“度量” 、“剪拼”、“作輔助線” 等等甚至更多的方法。為此我又拋出問題:五、六、七邊形的內(nèi)角和怎么求?你發(fā)現(xiàn)了什么?通過這個問題讓學生自然過渡到用作輔助線的方法求多邊形的內(nèi)角和,同時也要告訴學生在測量和剪拼活動中可能會產(chǎn)生誤差,由此感受到作輔助線在解決幾何問題中的必要性。這一環(huán)節(jié)要給予學生充分的探究時間,鼓勵學生積極參與,合作交流,用自己的語言表達解決問題的方式方法,發(fā)展學生的語言表達能力與推理能力。
針對不同層次的學生,要適當?shù)囊龑W生利用作輔助線的方法把多邊形轉(zhuǎn)化為三角形,鼓勵學生尋找多種分割形式,深入領(lǐng)會轉(zhuǎn)化的本質(zhì)——將四邊形轉(zhuǎn)化為三角形問題來解決。然后讓學生表達自己解決問題的方法,并用電腦演示四邊形分割成三角形的多種方法讓學生體驗數(shù)學活動充滿探索,體驗解決問題策略的多樣性。
想一想:這些分法有什么異同點?學生積極思考,大膽發(fā)言,教師給予適當?shù)脑u價和鼓勵。教師在學生回答的基礎(chǔ)上小結(jié):借助輔助線把四邊形分割成幾個三角形分割的關(guān)鍵在于公共點的選取,并演示公共點在圖形內(nèi)、外、頂點處。利用三角形內(nèi)角和求得四邊形內(nèi)角和,這是數(shù)學學習中的一種常用轉(zhuǎn)化的思想方法。
活動2:
做一做:選一種你喜歡的上述分割的方法,類比求四邊形的內(nèi)角和方法求五邊形、六邊形、七邊形等的內(nèi)角和,讓學生再一次經(jīng)歷轉(zhuǎn)化的過程,加深對轉(zhuǎn)化思想的理解,通過增加圖形的復(fù)雜性,再一次經(jīng)歷轉(zhuǎn)化的過程,加深對轉(zhuǎn)化思想方法的理解,體會由簡單到復(fù)雜,由特殊到一般的思想方法。
上節(jié)課我們學習了多邊形的對角線,我們來看對角線與多邊形的邊數(shù)和多邊形的內(nèi)角和之間有什么關(guān)系?
議一議:
問題1:對比上面探究四邊形內(nèi)角和的過程,你能得出五邊形的內(nèi)角和?六邊形的內(nèi)角和?
問題2:能否采用不同的分割方法來解決這些問題?
問題3:n邊形的內(nèi)角和是多少?
活動3:
想一想:采取表格的形式,首先請學生找出將多邊形分割成三角形的個數(shù),再根據(jù)三角形個數(shù)求出多邊形的內(nèi)角和。學生分組討論、歸納分析并展示自己發(fā)現(xiàn)的規(guī)律,要求用已“探究”的不同多邊形來有條理地發(fā)現(xiàn)和概括出多邊形的邊數(shù)與內(nèi)角和之間的關(guān)系,水到渠成地歸納、類比推出n邊形的內(nèi)角和公式,讓學生體會從特殊到一般的思考問題的方法根據(jù)本組探究過程填寫下面表格的第二、三、四列,你能從中發(fā)現(xiàn)什么規(guī)律?
嘗試完成第五列n邊形的探究。
由于學生不熟悉完全歸納法,采取表格的形式使歸納更富條理性。為了讓學生更好的理解多邊形內(nèi)角和公式(n-2)×180°,我又鮮明的指出:N表示什么?
但是學生有可能出現(xiàn)其它的解決問題的辦法,比如:由四邊形內(nèi)角和求五邊形內(nèi)角和,由五邊形內(nèi)角和再求六邊形內(nèi)角和,依次類推,邊數(shù)每增加1條內(nèi)角和就增加 180°。但是這種方法給活動3公式的得出帶來困難。所以教師要因勢利導,給學生正確的評價。在探索的過程中再一次培養(yǎng)學生的推理能力和表達能力,以及選擇解決問題的最佳方法的能力。
練一練:為了使學生達到對知識的鞏固與應(yīng)用,我特地設(shè)計了一組(5個)即時搶答題,通過這些題目學生當堂訓練、獨立計算,并根據(jù)學生都喜好競賽的特點,采用搶答式完成。運用所學公式解決問題并鞏固、理解、記憶公式。
搶答:
(1)過一個多邊形一個頂點有10條對角線,則這是 邊形.
(2)過一個多邊形一個頂點的所有對角線將這個多邊形分成五個三角形,則這是 邊形.
(3)多邊形的內(nèi)角和隨著邊數(shù)的增加而 ,邊數(shù)增加一條時它的內(nèi)角和增加 度。
(4)十二邊形的內(nèi)角和等于 度。
(5)一個多邊形的內(nèi)角和等于720度,那么這個多邊形是 邊形.
3、環(huán)節(jié)三:例題講解,知識鞏固
在此,我設(shè)計了2個例題,并對教科書上的例題作了較小的改動,書上的例1簡略講解,這個例題就是對四邊形的內(nèi)角和的簡單應(yīng)用,對于學生來說比較簡單;對于例2我把書后面的85頁習題第9題變成例題,這一道題目具有較好的典型性,特別是知識間的融會貫通,主要要求學生掌握:三角形、五邊形的內(nèi)角和,正五邊形等相關(guān)知識。
4、環(huán)節(jié)四:分組競賽、情感升華
(1)智慧大比拼
內(nèi)容:P87的練習分成2類。
通過新穎的形式激發(fā)學生的競爭意識和主動參與活動的熱情。學生利用當堂所學的知識解決問題,鞏固本節(jié)知識。
(2)拓展探究
內(nèi)容:用一把剪刀,將一張正方形卡片一個角截去,剩下的卡片是一個幾邊形?它的內(nèi)角和是多少?
小組合作探究,引導學生分析可能的每一種截取情況,根據(jù)不同截法得出不同結(jié)論。鼓勵學生積極參與思考、大膽嘗試、主動探討、勇于創(chuàng)新。讓學生深刻的感受到合作交流的重要性,體會成功的喜悅。
(3)情系世博
內(nèi)容:2010年5月1日世博會在上海拉開帷幕,小明為了紀念這一特殊年號,他想用2010°設(shè)計一個多邊形,他的愿望能實現(xiàn)嗎?
引導學生利用多邊形的內(nèi)角和公式解釋小明的設(shè)想能否實現(xiàn)。讓學生感受到數(shù)學的趣味性,以及與實際生活之間的密切聯(lián)系,并激發(fā)學生的愛國之情。
5、環(huán)節(jié)五:暢所欲言、分享成果
請學生談自己學習過程中的收獲,并整理自己參與數(shù)學活動的經(jīng)驗,回味成功的喜悅,形成良好的學習習慣,同時也是給學生正確地評價自己和他人表現(xiàn)的機會,這也是給教者本身一個反思提高的機會。通過這個環(huán)節(jié)使學生這節(jié)課所學的知識系統(tǒng)化,從感性認識上升為理性認識。
6、環(huán)節(jié)六:布置作業(yè)、課后提升
(1)習題7.3第2題、第4題。
(2)選做題:用另外兩種作輔助線的方法證明多邊形內(nèi)角和定理。
采用分層布置作業(yè),讓不同水平的學生得到不同的發(fā)展,培養(yǎng)學生的思維靈活性及成就感,從而貫徹因材施教的原則。
六、評價分析
評價學生,不僅僅是一個手段和結(jié)果,它對學生的人格、個性的發(fā)展有著極其重要的作用。新課程對課程的評價應(yīng)把握形成性、發(fā)展性評價和終結(jié)性評價相結(jié)合,在實踐中我打算在課堂上從以下幾個方面進行評價:
1、評價在學習中各種能力〈如表達、想象、動手、思維、自學能力等〉的發(fā)展情況。
2、評價學習過程中的創(chuàng)新表現(xiàn)。
3、評價在學習過程中對身邊事物、社會現(xiàn)實的關(guān)注程度。
評價必須最大限度地考慮最終結(jié)果,要以培養(yǎng)學生的榮譽感、自尊心和進取心為目的,使其產(chǎn)生獲取成功的動力。
七、說板書設(shè)計
最后,我的板書設(shè)計力求簡潔明了,便于學生觀察比較、歸納總結(jié),并體現(xiàn)教師的示范作用,突出本堂課的重難點,及主要的思想方法。
板書設(shè)計:
多邊形的內(nèi)角和
以上是我對本節(jié)課的設(shè)計說明,從說教材、說學情、說教法、說學法、說教學程序上說明這節(jié)課“教什么”和“怎么教”,并且闡明了“為什么要這樣教.我的說課到此結(jié)束,謝謝大家。
【初中數(shù)學說課稿《多邊形的內(nèi)角和》】相關(guān)文章:
多邊形及其內(nèi)角和教學反思07-26
初中數(shù)學的說課稿12-02
初中數(shù)學說課稿06-10
初中數(shù)學優(yōu)秀說課稿06-25
初中數(shù)學說課稿03-11
經(jīng)典初中數(shù)學說課稿11-09
初中數(shù)學面試說課稿11-20
初中數(shù)學的說課稿【熱門】12-07