有關(guān)高中數(shù)學(xué)說(shuō)課稿合集五篇
作為一名教師,時(shí)常需要編寫說(shuō)課稿,說(shuō)課稿有助于學(xué)生理解并掌握系統(tǒng)的知識(shí)。那么說(shuō)課稿應(yīng)該怎么寫才合適呢?下面是小編為大家整理的高中數(shù)學(xué)說(shuō)課稿5篇,歡迎大家分享。
高中數(shù)學(xué)說(shuō)課稿 篇1
一、教材分析
1、教材所處的地位和作用
奇偶性是人教A版第一章集合與函數(shù)概念的第3節(jié)函數(shù)的基本性質(zhì)的第2小節(jié)。
奇偶性是函數(shù)的一條重要性質(zhì),教材從學(xué)生熟悉的 及入手,從特殊到一般,從具體到抽象,注重信息技術(shù)的應(yīng)用,比較系統(tǒng)地介紹了函數(shù)的奇偶性。從知識(shí)結(jié)構(gòu)看,它既是函數(shù)概念的拓展和深化,又是后續(xù)研究指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)、三角函數(shù)的基礎(chǔ)。因此,本節(jié)課起著承上啟下的重要作用。
2、學(xué)情分析
從學(xué)生的認(rèn)知基礎(chǔ)看,學(xué)生在初中已經(jīng)學(xué)習(xí)了軸對(duì)稱圖形和中心對(duì)稱圖形,并且有了一定數(shù)量的簡(jiǎn)單函數(shù)的儲(chǔ)備。同時(shí),剛剛學(xué)習(xí)了函數(shù)單調(diào)性,已經(jīng)積累了研究函數(shù)的基本方法與初步經(jīng)驗(yàn)。
從學(xué)生的思維發(fā)展看,高一學(xué)生思維能力正在由形象經(jīng)驗(yàn)型向抽象理論型轉(zhuǎn)變,能夠用假設(shè)、推理來(lái)思考和解決問(wèn)題、
3、教學(xué)目標(biāo)
基于以上對(duì)教材和學(xué)生的分析,以及新課標(biāo)理念,我設(shè)計(jì)了這樣的教學(xué)目標(biāo):
【知識(shí)與技能】
1、能判斷一些簡(jiǎn)單函數(shù)的奇偶性。
2、能運(yùn)用函數(shù)奇偶性的代數(shù)特征和幾何意義解決一些簡(jiǎn)單的問(wèn)題。
【過(guò)程與方法】
經(jīng)歷奇偶性概念的形成過(guò)程,提高觀察抽象能力以及從特殊到一般的歸納概括能力。
【情感、態(tài)度與價(jià)值觀】
通過(guò)自主探索,體會(huì)數(shù)形結(jié)合的思想,感受數(shù)學(xué)的對(duì)稱美。
從課堂反應(yīng)看,基本上達(dá)到了預(yù)期效果。
4、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):函數(shù)奇偶性的概念和幾何意義。
幾年的教學(xué)實(shí)踐證明,雖然函數(shù)奇偶性這一節(jié)知識(shí)點(diǎn)并不是很難理解,但知識(shí)點(diǎn)掌握不全面的學(xué)生容易出現(xiàn)下面的錯(cuò)誤。他們往往流于表面形式,只根據(jù)奇偶性的定義檢驗(yàn)成立即可,而忽視了考慮函數(shù)定義域的問(wèn)題。因此,在介紹奇、偶函數(shù)的定義時(shí),一定要揭示定義的隱含條件,從正反兩方面講清定義的內(nèi)涵和外延。因此,我把函數(shù)的奇偶性概念設(shè)計(jì)為本節(jié)課的重點(diǎn)。在這個(gè)問(wèn)題上我除了注意概念的講解,還特意安排了一道例題,來(lái)加強(qiáng)本節(jié)課重點(diǎn)問(wèn)題的講解。
難點(diǎn):奇偶性概念的數(shù)學(xué)化提煉過(guò)程。
由于,學(xué)生看待問(wèn)題還是靜止的、片面的,抽象概括能力比較薄弱,這對(duì)建構(gòu)奇偶性的概念造成了一定的困難。因此我把奇偶性概念的數(shù)學(xué)化提煉過(guò)程設(shè)計(jì)為本節(jié)課的難點(diǎn)。
二、教法與學(xué)法分析
1、教法
根據(jù)本節(jié)教材內(nèi)容和編排特點(diǎn),為了更有效地突出重點(diǎn),突破難點(diǎn),按照學(xué)生的認(rèn)知規(guī)律,遵循教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想,采用以引導(dǎo)發(fā)現(xiàn)法為主,直觀演示法、類比法為輔。教學(xué)中,精心設(shè)計(jì)一個(gè)又一個(gè)帶有啟發(fā)性和思考性的問(wèn)題,創(chuàng)設(shè)問(wèn)題情景,誘導(dǎo)學(xué)生思考,使學(xué)生始終處于主動(dòng)探索問(wèn)題的積極狀態(tài),從而培養(yǎng)思維能力。從課堂反應(yīng)看,基本上達(dá)到了預(yù)期效果。
2、學(xué)法
讓學(xué)生在觀察一歸納一檢驗(yàn)一應(yīng)用的學(xué)習(xí)過(guò)程中,自主參與知識(shí)的發(fā)生、發(fā)展、形成的過(guò)程,從而使學(xué)生掌握知識(shí)。
三、教學(xué)過(guò)程
具體的教學(xué)過(guò)程是師生互動(dòng)交流的過(guò)程,共分六個(gè)環(huán)節(jié):設(shè)疑導(dǎo)入、觀圖激趣;指導(dǎo)觀察、形成概念;學(xué)生探索、領(lǐng)會(huì)定義;知識(shí)應(yīng)用,鞏固提高;總結(jié)反饋;分層作業(yè),學(xué)以致用。下面我對(duì)這六個(gè)環(huán)節(jié)進(jìn)行說(shuō)明。
。ㄒ唬┰O(shè)疑導(dǎo)入、觀圖激趣
由于本節(jié)內(nèi)容相對(duì)獨(dú)立,專題性較強(qiáng),所以我采用了開門見山導(dǎo)入方式,直接點(diǎn)明要學(xué)的內(nèi)容,使學(xué)生的思維迅速定向,達(dá)到開始就明確目標(biāo)突出重點(diǎn)的效果。
用多媒體展示一組圖片,使學(xué)生感受到生活中的對(duì)稱美。再讓學(xué)生觀察幾個(gè)特殊函數(shù)圖象。通過(guò)讓學(xué)生觀察圖片導(dǎo)入新課,既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為學(xué)習(xí)新知識(shí)作好鋪墊。
。ǘ┲笇(dǎo)觀察、形成概念
在這一環(huán)節(jié)中共設(shè)計(jì)了2個(gè)探究活動(dòng)。
探究1 、2 數(shù)學(xué)中對(duì)稱的形式也很多,這節(jié)課我們就以函數(shù)和=︱x︱以及和為例展開探究。這個(gè)探究主要是通過(guò)學(xué)生的自主探究來(lái)實(shí)現(xiàn)的,由于有圖片的鋪墊,絕大多數(shù)學(xué)生很快就說(shuō)出函數(shù)圖象關(guān)于Y軸(原點(diǎn))對(duì)稱。接著學(xué)生填表,從數(shù)值角度研究圖象的這種特征,體現(xiàn)在自變量與函數(shù)值之間有何規(guī)律? 引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號(hào)表示。借助課件演示(令 比較 得出等式 , 再令 ,得到 ) 讓學(xué)生發(fā)現(xiàn)兩個(gè)函數(shù)的對(duì)稱性反應(yīng)到函數(shù)值上具有的特性, ()然后通過(guò)解析式給出嚴(yán)格證明,進(jìn)一步說(shuō)明這個(gè)特性對(duì)定義域內(nèi)任意一個(gè) 都成立。 最后給出偶函數(shù)(奇函數(shù))定義(板書)。
在這個(gè)過(guò)程中,學(xué)生把對(duì)圖形規(guī)律的感性認(rèn)識(shí),轉(zhuǎn)化成數(shù)量的規(guī)律性,從而上升到了理性認(rèn)識(shí),切實(shí)經(jīng)歷了一次從特殊歸納出一般的過(guò)程體驗(yàn)。
(三) 學(xué)生探索、領(lǐng)會(huì)定義
探究3 下列函數(shù)圖象具有奇偶性嗎?
設(shè)計(jì)意圖:深化對(duì)奇偶性概念的理解。強(qiáng)調(diào):函數(shù)具有奇偶性的前提條件是--定義域關(guān)于原點(diǎn)對(duì)稱。(突破了本節(jié)課的難點(diǎn))
。ㄋ模┲R(shí)應(yīng)用,鞏固提高
在這一環(huán)節(jié)我設(shè)計(jì)了4道題
例1判斷下列函數(shù)的奇偶性
選例1的第(1)及(3)小題板書來(lái)示范解題步驟,其他小題讓學(xué)生在下面完成。
例1設(shè)計(jì)意圖是歸納出判斷奇偶性的步驟:
(1) 先求定義域,看是否關(guān)于原點(diǎn)對(duì)稱;
(2) 再判斷f(-x)=-f(x) 還是 f(-x)=f(x)。
例2 判斷下列函數(shù)的奇偶性:
例3 判斷下列函數(shù)的奇偶性:
例2、3設(shè)計(jì)意圖是探究一個(gè)函數(shù)奇偶性的可能情況有幾種類型?
例4(1)判斷函數(shù)的奇偶性。
(2)如圖給出函數(shù)圖象的一部分,你能根據(jù)函數(shù)的奇偶性畫出它在y軸左邊的圖象嗎?
例4設(shè)計(jì)意圖加強(qiáng)函數(shù)奇偶性的幾何意義的應(yīng)用。
在這個(gè)過(guò)程中,我重點(diǎn)關(guān)注了學(xué)生的推理過(guò)程的表述。通過(guò)這些問(wèn)題的解決,學(xué)生對(duì)函數(shù)的奇偶性認(rèn)識(shí)、理解和應(yīng)用都能提升很大一個(gè)高度,達(dá)到當(dāng)堂消化吸收的效果。
。ㄎ澹┛偨Y(jié)反饋
在以上課堂實(shí)錄中充分展示了教法、學(xué)法中的互動(dòng)模式,問(wèn)題貫穿于探究過(guò)程的始終,切實(shí)體現(xiàn)了啟發(fā)式、問(wèn)題式教學(xué)法的特色。
在本節(jié)課的最后對(duì)知識(shí)點(diǎn)進(jìn)行了簡(jiǎn)單回顧,并引導(dǎo)學(xué)生總結(jié)出本節(jié)課應(yīng)積累的解題經(jīng)驗(yàn)。知識(shí)在于積累,而學(xué)習(xí)數(shù)學(xué)更在于知識(shí)的應(yīng)用經(jīng)驗(yàn)的積累。所以提高知識(shí)的應(yīng)用能力、增強(qiáng)錯(cuò)誤的預(yù)見能力是提高數(shù)學(xué)綜合能力的很重要的策略。
。┓謱幼鳂I(yè),學(xué)以致用
必做題:課本第36頁(yè)練習(xí)第1-2題。
選做題:課本第39頁(yè)習(xí)題1、3A組第6題。
思考題:課本第39頁(yè)習(xí)題1、3B組第3題。
設(shè)計(jì)意圖:面向全體學(xué)生,注重個(gè)人差異,加強(qiáng)作業(yè)的針對(duì)性,對(duì)學(xué)生進(jìn)行分層作業(yè),既使學(xué)生掌握基礎(chǔ)知識(shí),又使學(xué)有余力的學(xué)生有所提高,進(jìn)一步達(dá)到不同的人在數(shù)學(xué)上得到不同的發(fā)展。
高中數(shù)學(xué)說(shuō)課稿 篇2
【一】教學(xué)背景分析
1。教材結(jié)構(gòu)分析
《圓的方程》安排在高中數(shù)學(xué)第二冊(cè)(上)第七章第六節(jié)。圓作為常見的簡(jiǎn)單幾何圖形,在實(shí)際生活和生產(chǎn)實(shí)踐中有著廣泛的應(yīng)用。圓的方程屬于解析幾何學(xué)的基礎(chǔ)知識(shí),是研究二次曲線的開始,對(duì)后續(xù)直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容的學(xué)習(xí),無(wú)論在知識(shí)上還是方法上都有著積極的意義,所以本節(jié)內(nèi)容在整個(gè)解析幾何中起著承前啟后的作用。
2。學(xué)情分析
圓的方程是學(xué)生在初中學(xué)習(xí)了圓的概念和基本性質(zhì)后,又掌握了求曲線方程的一般方法的基礎(chǔ)上進(jìn)行研究的。但由于學(xué)生學(xué)習(xí)解析幾何的時(shí)間還不長(zhǎng)、學(xué)習(xí)程度較淺,且對(duì)坐標(biāo)法的運(yùn)用還不夠熟練,在學(xué)習(xí)過(guò)程中難免會(huì)出現(xiàn)困難。另外學(xué)生在探究問(wèn)題的能力,合作交流的意識(shí)等方面有待加強(qiáng)。
根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我制定如下教學(xué)目標(biāo):
3。教學(xué)目標(biāo)
(1) 知識(shí)目標(biāo):①掌握?qǐng)A的標(biāo)準(zhǔn)方程;
、跁(huì)由圓的標(biāo)準(zhǔn)方程寫出圓的半徑和圓心坐標(biāo),能根據(jù)條件寫出圓的標(biāo)準(zhǔn)方程;
、劾脠A的標(biāo)準(zhǔn)方程解決簡(jiǎn)單的實(shí)際問(wèn)題。
。2) 能力目標(biāo):①進(jìn)一步培養(yǎng)學(xué)生用代數(shù)方法研究幾何問(wèn)題的能力;
、诩由顚(duì)數(shù)形結(jié)合思想的理解和加強(qiáng)對(duì)待定系數(shù)法的運(yùn)用;
、墼鰪(qiáng)學(xué)生用數(shù)學(xué)的意識(shí)。
(3) 情感目標(biāo):①培養(yǎng)學(xué)生主動(dòng)探究知識(shí)、合作交流的意識(shí);
、谠隗w驗(yàn)數(shù)學(xué)美的過(guò)程中激發(fā)學(xué)生的學(xué)習(xí)興趣。
根據(jù)以上對(duì)教材、教學(xué)目標(biāo)及學(xué)情的分析,我確定如下的教學(xué)重點(diǎn)和難點(diǎn):
4。 教學(xué)重點(diǎn)與難點(diǎn)
(1)重點(diǎn):圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用。
。2)難點(diǎn): ①會(huì)根據(jù)不同的已知條件求圓的標(biāo)準(zhǔn)方程;
、谶x擇恰當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實(shí)際問(wèn)題。
為使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再?gòu)慕谭ê蛯W(xué)法上進(jìn)行分析:
好學(xué)教育:
【二】教法學(xué)法分析
1。教法分析 為了充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“啟發(fā)式”問(wèn)題教學(xué)法,用環(huán)環(huán)相扣的問(wèn)題將探究活動(dòng)層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區(qū)上。另外我恰當(dāng)?shù)睦枚嗝襟w課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng)設(shè)實(shí)際問(wèn)題的情境既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又直觀的引導(dǎo)了學(xué)生建模的過(guò)程。
2。學(xué)法分析 通過(guò)推導(dǎo)圓的標(biāo)準(zhǔn)方程,加深對(duì)用坐標(biāo)法求軌跡方程的理解。通過(guò)求圓的標(biāo)準(zhǔn)方程,理解必須具備三個(gè)獨(dú)立的條件才可以確定一個(gè)圓。通過(guò)應(yīng)用圓的標(biāo)準(zhǔn)方程,熟悉用待定系數(shù)法求的過(guò)程。 下面我就對(duì)具體的教學(xué)過(guò)程和設(shè)計(jì)加以說(shuō)明:
【三】教學(xué)過(guò)程與設(shè)計(jì)
整個(gè)教學(xué)過(guò)程是由七個(gè)問(wèn)題組成的問(wèn)題鏈驅(qū)動(dòng)的,共分為五個(gè)環(huán)節(jié):
創(chuàng)設(shè)情境 啟迪思維 深入探究 獲得新知 應(yīng)用舉例 鞏固提高
反饋訓(xùn)練 形成方法 小結(jié)反思 拓展引申
下面我從縱橫兩方面敘述我的教學(xué)程序與設(shè)計(jì)意圖。
首先:縱向敘述教學(xué)過(guò)程
(一)創(chuàng)設(shè)情境——啟迪思維
問(wèn)題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2。7m,高為3m的貨車能不能駛?cè)脒@個(gè)隧道?
通過(guò)對(duì)這個(gè)實(shí)際問(wèn)題的探究,把學(xué)生的思維由用勾股定理求線段CD的長(zhǎng)度轉(zhuǎn)移為用曲線的方程來(lái)解決。一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過(guò)的結(jié)論的同時(shí)學(xué)生自己推導(dǎo)出了圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程,從而很自然的進(jìn)入了本課的主題。用實(shí)際問(wèn)題創(chuàng)設(shè)問(wèn)題情境,讓學(xué)生感受到問(wèn)題來(lái)源于實(shí)際,應(yīng)用于實(shí)際,激發(fā)了學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)欲望。這樣獲取的知識(shí),不但易于保持,而且易于遷移。
通過(guò)對(duì)問(wèn)題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標(biāo)法研究圓的方程上來(lái),此時(shí)再把問(wèn)題深入,進(jìn)入第二環(huán)節(jié)。
(二)深入探究——獲得新知
問(wèn)題二 1。根據(jù)問(wèn)題一的探究能不能得到圓心在原點(diǎn),半徑為的圓的方程?
2。如果圓心在,半徑為時(shí)又如何呢?
好學(xué)教育:
這一環(huán)節(jié)我首先讓學(xué)生對(duì)問(wèn)題一進(jìn)行歸納,得到圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程后,引導(dǎo)學(xué)生歸納出圓心在原點(diǎn),半徑為r的圓的標(biāo)準(zhǔn)方程。然后再讓學(xué)生對(duì)圓心不在原點(diǎn)的情況進(jìn)行探究。我預(yù)設(shè)了三種方法等待著學(xué)生的探究結(jié)果,分別是:坐標(biāo)法、圖形變換法、向量平移法。
得到圓的標(biāo)準(zhǔn)方程后,我設(shè)計(jì)了由淺入深的三個(gè)應(yīng)用平臺(tái),進(jìn)入第三環(huán)節(jié)。
。ㄈ⿷(yīng)用舉例——鞏固提高
I。直接應(yīng)用 內(nèi)化新知
問(wèn)題三 1。寫出下列各圓的標(biāo)準(zhǔn)方程:
。1)圓心在原點(diǎn),半徑為3;
。2)經(jīng)過(guò)點(diǎn),圓心在點(diǎn)。
2。寫出圓的圓心坐標(biāo)和半徑。
我設(shè)計(jì)了兩個(gè)小問(wèn)題,第一題是直接或間接的給出圓心坐標(biāo)和半徑求圓的標(biāo)準(zhǔn)方程,第二題是給出圓的標(biāo)準(zhǔn)方程求圓心坐標(biāo)和半徑,這兩題比較簡(jiǎn)單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握?qǐng)A心坐標(biāo)、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,為后面探究圓的切線問(wèn)題作準(zhǔn)備。
II。靈活應(yīng)用 提升能力
問(wèn)題四 1。求以點(diǎn)為圓心,并且和直線相切的圓的方程。
2。求過(guò)點(diǎn),圓心在直線上且與軸相切的圓的方程。
3。已知圓的方程為,求過(guò)圓上一點(diǎn)的切線方程。
你能歸納出具有一般性的結(jié)論嗎?
已知圓的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線的方程是什么?
我設(shè)計(jì)了三個(gè)小問(wèn)題,第一個(gè)小題有了剛剛解決問(wèn)題三的基礎(chǔ),學(xué)生會(huì)很快求出半徑,根據(jù)圓心坐標(biāo)寫出圓的標(biāo)準(zhǔn)方程。第二個(gè)小題有些困難,需要引導(dǎo)學(xué)生應(yīng)用待定系數(shù)法確定圓心坐標(biāo)和半徑再求解,從而理解必須具備三個(gè)獨(dú)立的條件才可以確定一個(gè)圓。第三個(gè)小題解決方法較多,我預(yù)設(shè)了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng)設(shè)了空間。最后我讓學(xué)生由第三小題的結(jié)論進(jìn)行歸納、猜想,在論證經(jīng)過(guò)圓上一點(diǎn)圓的切線方程的過(guò)程中,又一次模擬了真理發(fā)現(xiàn)的過(guò)程,使探究氣氛達(dá)到高潮。
III。實(shí)際應(yīng)用 回歸自然
問(wèn)題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱的長(zhǎng)度(精確到0。01m)。
好學(xué)教育:
我選用了教材的例3,它是待定系數(shù)法求出圓的三個(gè)參數(shù)的又一次應(yīng)用,同時(shí)也與引例相呼應(yīng),使學(xué)生形成解決實(shí)際問(wèn)題的一般方法,培養(yǎng)了學(xué)生建模的習(xí)慣和用數(shù)學(xué)的意識(shí)。
。ㄋ模┓答佊(xùn)練——形成方法
問(wèn)題六 1。求過(guò)原點(diǎn)和點(diǎn),且圓心在直線上的圓的標(biāo)準(zhǔn)方程。
2。求圓過(guò)點(diǎn)的切線方程。
3。求圓過(guò)點(diǎn)的切線方程。
接下來(lái)是第四環(huán)節(jié)——反饋訓(xùn)練。這一環(huán)節(jié)中,我設(shè)計(jì)三個(gè)小題作為鞏固性訓(xùn)練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗(yàn)學(xué)習(xí)數(shù)學(xué)的樂(lè)趣,成功的喜悅,找到自信,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的愿望與信心。另外第3題是我特意安排的一道求過(guò)圓外一點(diǎn)的圓的切線方程,由于學(xué)生剛剛歸納了過(guò)圓上一點(diǎn)圓的切線方程,因此很容易產(chǎn)生思維的負(fù)遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時(shí)引導(dǎo)學(xué)生用數(shù)形結(jié)合的思想,結(jié)合初中已有的圓的知識(shí)進(jìn)行判斷,這樣的設(shè)計(jì)對(duì)培養(yǎng)學(xué)生思維的嚴(yán)謹(jǐn)性具有良好的效果。
。ㄎ澹┬〗Y(jié)反思——拓展引申
1。課堂小結(jié)
把圓的標(biāo)準(zhǔn)方程與過(guò)圓上一點(diǎn)圓的切線方程加以小結(jié),提煉數(shù)形結(jié)合的思想和待定系數(shù)的方法 ①圓心為,半徑為r 的圓的標(biāo)準(zhǔn)方程為:
圓心在原點(diǎn)時(shí),半徑為r 的圓的標(biāo)準(zhǔn)方程為:。
、谝阎獔A的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線的方程是:。
2。分層作業(yè)
。ˋ)鞏固型作業(yè):教材P81—82:(習(xí)題7。6)1,2,4。(B)思維拓展型作業(yè):試推導(dǎo)過(guò)圓上一點(diǎn)的切線方程。
3。激發(fā)新疑
問(wèn)題七 1。把圓的標(biāo)準(zhǔn)方程展開后是什么形式?
2。方程表示什么圖形?
在本課的結(jié)尾設(shè)計(jì)這兩個(gè)問(wèn)題,作為對(duì)這節(jié)課內(nèi)容的鞏固與延伸,讓學(xué)生體會(huì)知識(shí)的起點(diǎn)與終點(diǎn)都蘊(yùn)涵著問(wèn)題,舊的問(wèn)題解決了,新的問(wèn)題又產(chǎn)生了。在知識(shí)的拓展中再次掀起學(xué)生探究的熱情。另外它為下節(jié)課研究圓的一般方程作了重要的準(zhǔn)備。
以上是我縱向的教學(xué)過(guò)程及簡(jiǎn)單的設(shè)計(jì)意圖,接下來(lái),我從三個(gè)方面橫向的進(jìn)一步闡述我的教學(xué)設(shè)計(jì): 橫向闡述教學(xué)設(shè)計(jì)
。ㄒ唬┩怀鲋攸c(diǎn) 抓住關(guān)鍵 突破難點(diǎn)
好學(xué)教育:
求圓的標(biāo)準(zhǔn)方程既是本節(jié)課的教學(xué)重點(diǎn)也是難點(diǎn),為此我布設(shè)了由淺入深的學(xué)習(xí)環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,逐步理解三個(gè)參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點(diǎn)的同時(shí)突破了難點(diǎn)。
第二個(gè)教學(xué)難點(diǎn)就是解決實(shí)際應(yīng)用問(wèn)題,這是學(xué)生固有的難題,主要是因?yàn)閼?yīng)用問(wèn)題的題目冗長(zhǎng),學(xué)生很難根據(jù)問(wèn)題情境構(gòu)建數(shù)學(xué)模型,缺乏解決實(shí)際問(wèn)題的信心,為此我首先用一道題目簡(jiǎn)潔、貼近生活的實(shí)例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時(shí)我借助多媒體課件的演示,引導(dǎo)學(xué)生真正走入問(wèn)題的情境之中,并從中抽象出數(shù)學(xué)模型,從而消除畏難情緒,增強(qiáng)了信心。最后再形成應(yīng)用圓的標(biāo)準(zhǔn)方程解決實(shí)際問(wèn)題的一般模式,并嘗試應(yīng)用該模式分析和解決第二個(gè)應(yīng)用問(wèn)題——問(wèn)題五。這樣的設(shè)計(jì),使學(xué)生在解決問(wèn)題的同時(shí),形成了方法,難點(diǎn)自然突破。
。ǘ⿲W(xué)生主體 教師主導(dǎo) 探究主線
本節(jié)課的設(shè)計(jì)用問(wèn)題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終。從圓的標(biāo)準(zhǔn)方程的推導(dǎo)到應(yīng)用都是在問(wèn)題的指引、我的指導(dǎo)下,由學(xué)生探究完成的。另外,我重點(diǎn)設(shè)計(jì)了兩次思維發(fā)散點(diǎn),分別是問(wèn)題二和問(wèn)題四的第三問(wèn),要求學(xué)生分組討論,合作交流,為學(xué)生設(shè)立充分的探究空間,學(xué)生在交流成果的過(guò)程中,既體驗(yàn)了科學(xué)研究和真理發(fā)現(xiàn)的復(fù)雜與艱辛,又在我的適度引導(dǎo)、側(cè)面幫助、不斷肯定下順利完成了探究活動(dòng)并走向成功,在一個(gè)個(gè)問(wèn)題的驅(qū)動(dòng)下,高效的完成本節(jié)的學(xué)習(xí)任務(wù)。
(三)培養(yǎng)思維 提升能力 激勵(lì)創(chuàng)新
為了培養(yǎng)學(xué)生的理性思維,我分別在問(wèn)題一和問(wèn)題四中,設(shè)計(jì)了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力。在問(wèn)題的設(shè)計(jì)中,我利用一題多解的探究,縱向挖掘知識(shí)深度,橫向加強(qiáng)知識(shí)間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時(shí)對(duì)所學(xué)知識(shí)和方法產(chǎn)生有意注意,使能力與知識(shí)的形成相伴而行。
以上是我對(duì)這節(jié)課的教學(xué)預(yù)設(shè),具體的教學(xué)過(guò)程還要根據(jù)學(xué)生在課堂中的具體情況適當(dāng)調(diào)整,向生成性課堂進(jìn)行轉(zhuǎn)變。最后我以赫爾巴特的一句名言結(jié)束我的說(shuō)課,發(fā)揮我們的創(chuàng)造性,力爭(zhēng)“使教育過(guò)程成為一種藝術(shù)的事業(yè)”。
高中數(shù)學(xué)說(shuō)課稿 篇3
各位評(píng)委,老師們:大家好!
很高興參加這次說(shuō)課活動(dòng)。這對(duì)我來(lái)說(shuō)也是一次難得的學(xué)習(xí)和鍛煉的機(jī)會(huì),感謝各位老師在百忙之中來(lái)此予以指導(dǎo)。希望各位評(píng)委和老師們對(duì)我的說(shuō)課內(nèi)容提出寶貴意見。
我說(shuō)課的內(nèi)容是<平面向量>的教學(xué),所用的教材是人民教育出版社出版的全日制普通高級(jí)中學(xué)教科書(試驗(yàn)修訂本—必修)<數(shù)學(xué)>第一冊(cè)下,教學(xué)內(nèi)容為第96頁(yè)至98頁(yè)第五章第一節(jié)。本校是浙江省一級(jí)重點(diǎn)中學(xué),學(xué)生基礎(chǔ)相對(duì)較好。我在進(jìn)行教學(xué)設(shè)計(jì)時(shí),也充分考慮到了這一點(diǎn)。
下面我從教材分析,教學(xué)目標(biāo)的確定,教學(xué)方法的選擇和教學(xué)過(guò)程的設(shè)計(jì)四個(gè)方面來(lái)匯報(bào)我對(duì)這節(jié)課的教學(xué)設(shè)想。
一說(shuō)教材
。1)地位和作用
向量是近代數(shù)學(xué)中重要和基本的概念之一,有著深刻的幾何背景,是解決幾何問(wèn)題的有力工具。向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以轉(zhuǎn)化為向量的加(減)法,數(shù)乘向量,數(shù)量積運(yùn)算(運(yùn)算率),從而把圖形的基本性質(zhì)轉(zhuǎn)化為向量的運(yùn)算體系。向量是溝通代數(shù),幾何與三角函數(shù)的一種工具,有著極其豐富的實(shí)際背景,在數(shù)學(xué)和物理學(xué)科中具有廣泛的應(yīng)用。
平面向量的基本概念是在學(xué)生了解了物理學(xué)中的有關(guān)力,位移等矢量的概念的基礎(chǔ)上進(jìn)一步對(duì)向量的深入學(xué)習(xí)。為學(xué)習(xí)向量的知識(shí)體系奠定了知識(shí)和方法基礎(chǔ)。
。2)教學(xué)結(jié)構(gòu)的調(diào)整
課本在這一部分內(nèi)容的教學(xué)為一課時(shí),首先從小船航行的距離和方向兩個(gè)要素出發(fā),抽象出向量的概念,并重點(diǎn)說(shuō)明了向量與數(shù)量的區(qū)別。然后介紹了向量的幾何表示,向量的長(zhǎng)度,零向量,單位向量,平行向量,共線向量,相等向量等基本概念。為使學(xué)生更好地掌握這些基本概念,同時(shí)深化其認(rèn)知過(guò)程和探究過(guò)程。在教學(xué)中我將教學(xué)的順序做如下的調(diào)整:將本節(jié)教學(xué)中認(rèn)知過(guò)程的教學(xué)內(nèi)容適當(dāng)集中,以突出這節(jié)課的主題;例題,習(xí)題部分主要由學(xué)生依照概念自行分析,獨(dú)立完成。
(3)重點(diǎn),難點(diǎn),關(guān)鍵
由于本節(jié)課是本章內(nèi)容的第一節(jié)課,是學(xué)生學(xué)習(xí)本章的基礎(chǔ)。為了本章后面知識(shí)的學(xué)習(xí),首先必須掌握向量的概念,要抓住向量的本質(zhì):大小與方向。所以向量,相等向量的概念,向量的幾何表示是這節(jié)課的重點(diǎn)。本節(jié)課是為高一后半學(xué)期學(xué)生設(shè)計(jì)的,盡管此時(shí)的學(xué)生已經(jīng)有了一定的學(xué)習(xí)方法和習(xí)慣,但根據(jù)以往的教學(xué)經(jīng)驗(yàn),多數(shù)學(xué)生對(duì)向量的認(rèn)識(shí)還比較單一,僅僅考慮其大小,忽略其方向,這對(duì)學(xué)生的理解能力要求比較高,所以我認(rèn)為向量概念也是這節(jié)課的難點(diǎn)。而解決這一難點(diǎn)的關(guān)鍵是多用復(fù)雜的幾何圖形中相等的有向線段讓學(xué)生進(jìn)行辨認(rèn),加深對(duì)向量的理解。
二說(shuō)教學(xué)目標(biāo)的確定
根據(jù)本課教材的特點(diǎn),新大綱對(duì)本節(jié)課的教學(xué)要求,學(xué)生身心發(fā)展的合理需要,我從三個(gè)方面確定了以下教學(xué)目標(biāo):
(1)基礎(chǔ)知識(shí)目標(biāo):理解向量,零向量,單位向量,共線向量,平行向量,相等向量的概念,會(huì)用字母表示向量,能讀寫已知圖中的向量。會(huì)根據(jù)圖形判定向量是否平行,共線,相等。
。2)能力訓(xùn)練目標(biāo):培養(yǎng)學(xué)生觀察、歸納、類比、聯(lián)想等發(fā)現(xiàn)規(guī)律的一般方法,培養(yǎng)學(xué)生觀察問(wèn)題,分析問(wèn)題,解決問(wèn)題的能力。
。3)情感目標(biāo):讓學(xué)生在民主、和諧的共同活動(dòng)中感受學(xué)習(xí)的樂(lè)趣。
三說(shuō)教學(xué)方法的選擇
Ⅰ教學(xué)方法
本節(jié)課我采用了”啟發(fā)探究式的教學(xué)方法,根據(jù)本課教材的特點(diǎn)和學(xué)生的實(shí)際情況在教學(xué)中突出以下兩點(diǎn):
。1)由教材的特點(diǎn)確立類比思維為教學(xué)的主線。
從教材內(nèi)容看平面向量無(wú)論從形式還是內(nèi)容都與物理學(xué)中的有向線段,矢量的概念類似。因此在教學(xué)中運(yùn)用類比作為思維的主線進(jìn)行教學(xué)。讓學(xué)生充分體會(huì)數(shù)學(xué)知識(shí)與其他學(xué)科之間的聯(lián)系以及發(fā)生與發(fā)展的過(guò)程。
(2)由學(xué)生的特點(diǎn)確立自主探索式的學(xué)習(xí)方法
通常學(xué)生對(duì)于概念課學(xué)起來(lái)很枯燥,不感興趣,因此要考慮學(xué)生的情感需要,找一些學(xué)生感興趣的題材來(lái)激發(fā)學(xué)生的學(xué)習(xí)興趣,另外,學(xué)生都有表現(xiàn)自己的欲望,希望得到老師和其他同學(xué)的認(rèn)可,要多表?yè)P(yáng),多肯定來(lái)激勵(lì)他們的學(xué)習(xí)熱情。考慮到我校學(xué)生的基礎(chǔ)較好,思維較為活躍,對(duì)自主探索式的學(xué)習(xí)方法也有一定的認(rèn)識(shí),所以在教學(xué)中我通過(guò)創(chuàng)設(shè)問(wèn)題情境,啟發(fā)引導(dǎo)學(xué)生運(yùn)用科學(xué)的思維方法進(jìn)行自主探究。將學(xué)生的獨(dú)立思考,自主探究,交流討論等探索活動(dòng)貫穿于課堂教學(xué)的全過(guò)程,突出學(xué)生的主體作用。
、蚪虒W(xué)手段
本節(jié)課中,除使用常規(guī)的教學(xué)手段外,我還使用了多媒體投影儀和計(jì)算機(jī)來(lái)輔助教學(xué)。多媒體投影為師生的交流和討論提供了平臺(tái);計(jì)算機(jī)演示的作圖過(guò)程則有助于滲透數(shù)形結(jié)合思想,更易于對(duì)概念的理解和難點(diǎn)的突破。
四教學(xué)過(guò)程的設(shè)計(jì)
Ⅰ知識(shí)引入階段———提出學(xué)習(xí)課題,明確學(xué)習(xí)目標(biāo)
。1)創(chuàng)設(shè)情境——引入概念
數(shù)學(xué)學(xué)習(xí)應(yīng)該與學(xué)生的生活融合起來(lái),從學(xué)生的生活經(jīng)驗(yàn)和已有的知識(shí)背景出發(fā),讓他們?cè)谏钪腥グl(fā)現(xiàn)數(shù)學(xué)、探究數(shù)學(xué)、認(rèn)識(shí)并掌握數(shù)學(xué)。
由生活中具體的向量的實(shí)例引入:大海中船只的航線,中國(guó)象棋中”馬”,”象”的走法等。這些符合高中學(xué)生思維活躍,想象力豐富的特點(diǎn),有利于激發(fā)學(xué)生的學(xué)習(xí)興趣。
(2)觀察歸納——形成概念
由實(shí)例得出有向線段的概念,有向線段的三個(gè)要素:起點(diǎn),方向,長(zhǎng)度。明確知道了有向線段的起點(diǎn),方向和長(zhǎng)度,它的終點(diǎn)就唯一確定。再有目的的進(jìn)行設(shè)計(jì),引導(dǎo)學(xué)生概括總結(jié)出本課新的知識(shí)點(diǎn):向量的概念及其幾何表示。
。3)討論研究——深化概念
在得到概念后進(jìn)行歸納,深化,之后向?qū)W生提出以下三個(gè)問(wèn)題:
①向量的要素是什么?
②向量之間能否比較大?
、巯蛄颗c數(shù)量的區(qū)別是什么?
同時(shí)指出這就是本節(jié)課我們要研究和學(xué)習(xí)的主題。
、蛑R(shí)探索階段———探索平面向量的平行向量。相等向量等概念
。1)總結(jié)反思——提高認(rèn)識(shí)
方向相同或相反的非零向量叫平行向量,也即共線向量,并且規(guī)定0與任一向量平行.長(zhǎng)度相等且方向相同的向量叫相等向量,規(guī)定零向量與零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要條件。
。2)即時(shí)訓(xùn)練—鞏固新知
為了使學(xué)生達(dá)到對(duì)知識(shí)的深化理解,從而達(dá)到鞏固提高的效果,我特地設(shè)計(jì)了一組即時(shí)訓(xùn)練題,通過(guò)學(xué)生的觀察嘗試,討論研究,教師引導(dǎo)來(lái)鞏固新知識(shí)。
。劬毩(xí)1]判斷下列命題是否正確,若不正確,請(qǐng)簡(jiǎn)述理由.
①向量與是共線向量,則A、B、C、D四點(diǎn)必在一直線上;
②單位向量都相等;
③任一向量與它的相反向量不相等;
④四邊形ABCD是平行四邊形的充要條件是=;
⑤模為0是一個(gè)向量方向不確定的充要條件;
、薰簿的向量,若起點(diǎn)不同,則終點(diǎn)一定不同.
。劬毩(xí)2]下列命題正確的是( )
A.a(chǎn)與b共線,b與c共線,則a與c也共線
B.任意兩個(gè)相等的非零向量的始點(diǎn)與終點(diǎn)是一平行四邊形的四頂點(diǎn)
C.向量a與b不共線,則a與b都是非零向量
D.有相同起點(diǎn)的兩個(gè)非零向量不平行
、笾R(shí)應(yīng)用階段————共線向量,相等向量等概念的初步應(yīng)用
在本階段的教學(xué)中,我采用的是課本上一道典型的例題:在一個(gè)復(fù)雜圖形中觀察,辨認(rèn)平行,相等的有向線段。選用本題的目的是讓學(xué)生進(jìn)行獨(dú)立思考,自主探究,交流討論等探索活動(dòng),加深對(duì)概念的理解和對(duì)難點(diǎn)的突破。
例如圖所示,設(shè)O是正六邊形ABCDEF的中心,分別寫出圖中與向量相等的向量。(同時(shí)思考:向量與相等么?向量與相等么?)
具體教學(xué)安排如下:
。1)分析解決問(wèn)題
先引導(dǎo)學(xué)生分析解決問(wèn)題。包括向量的概念,:向量相等的概念。抓住相等向量概念的實(shí)質(zhì):兩個(gè)向量只有當(dāng)它們的模相等,同時(shí)方向又相同時(shí),才能稱它們相等。進(jìn)而進(jìn)行正確的辨認(rèn),直至最終解決問(wèn)題。
。2)歸納解題方法
主要引導(dǎo)學(xué)生歸納以下兩個(gè)問(wèn)題:①零向量的方向是任意的,它只與零向量相
等;②兩個(gè)向量只要它們的模相等,方向相同就是相等向量。一個(gè)向量只要不改變它的大小和方向,是可以任意平行移動(dòng)的,既向量是自由的。
、魧W(xué)習(xí),小結(jié)階段———?dú)w納知識(shí)方法,布置課后作業(yè)
本階段通過(guò)學(xué)習(xí)小結(jié)進(jìn)行課堂教學(xué)的反饋,組織和指導(dǎo)學(xué)生歸納知識(shí),技能,方法的一般規(guī)律,為后續(xù)學(xué)習(xí)打好基礎(chǔ)。
具體的教學(xué)安排如下:
。1)知識(shí),方法小結(jié)在知識(shí)層面上我首先引導(dǎo)學(xué)生回顧本節(jié)課的主要內(nèi)容,提醒學(xué)生要抓住向量的本質(zhì):大小與方向,對(duì)它們進(jìn)行類比,加深對(duì)每個(gè)概念的理解。
在方法層面上我將帶領(lǐng)學(xué)生回顧探索過(guò)程中用到的思維方法和數(shù)學(xué)方法如:
類比,數(shù)形結(jié)合,等價(jià)轉(zhuǎn)化等進(jìn)行強(qiáng)調(diào)。
。2)布置課后作業(yè)
閱讀教材96至97頁(yè)內(nèi)容,整理課堂筆記,習(xí)題5。1第1,2,3題。
高中數(shù)學(xué)說(shuō)課稿 篇4
尊敬的各位評(píng)委、各位老師大家好!我說(shuō)課的題目是《直線的點(diǎn)斜式方程》,選自人民教育出版社普通高中課程標(biāo)準(zhǔn)試驗(yàn)教科書數(shù)學(xué)必修2(A版),是第三章直線與方程中的第2節(jié)的第一課時(shí)3.2.1直線的點(diǎn)斜式方程的內(nèi)容。下面我將從教學(xué)背景、教學(xué)方法、教學(xué)過(guò)程及教學(xué)特點(diǎn)等四個(gè)方面具體說(shuō)明。
一、教學(xué)背景的分析
1.教材分析
直線的方程是學(xué)生在初中學(xué)習(xí)了一次函數(shù)的概念和圖象及高中學(xué)習(xí)了直線的斜率后進(jìn)行研究的。直線的方程屬于解析幾何學(xué)的基礎(chǔ)知識(shí),是研究解析幾何學(xué)的開始,對(duì)后續(xù)研究?jī)蓷l直線的位置關(guān)系、圓的方程、直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容,無(wú)論在知識(shí)上還是方法上都是地位顯要,作用非同尋常,是本章的重點(diǎn)內(nèi)容之一!爸本的點(diǎn)斜式方程”可以說(shuō)是直線的方程的形式中最重要、最基本的形式,在此花多大的時(shí)間和精力都不為過(guò)。直線作為常見的最簡(jiǎn)單的曲線,在實(shí)際生活和生產(chǎn)實(shí)踐中有著廣泛的應(yīng)用。同時(shí)在這一節(jié)中利用坐標(biāo)法來(lái)研究曲線的數(shù)形結(jié)合、幾何直觀等數(shù)學(xué)思想將貫穿于我們整個(gè)高中數(shù)學(xué)教學(xué)。
2.學(xué)情分析
我校的生源較差,學(xué)生的基礎(chǔ)和學(xué)習(xí)習(xí)慣都有待加強(qiáng)。又由于剛開始學(xué)習(xí)解析幾何,第一次用坐標(biāo)法來(lái)求曲線的方程,在學(xué)習(xí)過(guò)程中,會(huì)出現(xiàn)“數(shù)”與“形”相互轉(zhuǎn)化的困難。另外我校學(xué)生在探究問(wèn)題的能力,合作交流的意識(shí)等方面更有待加強(qiáng)。
根據(jù)上述教材分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我制定如下教學(xué)目標(biāo):
3.教學(xué)目標(biāo)
(1)了解直線的方程的概念和直線的點(diǎn)斜式方程的推導(dǎo)過(guò)程及方法;
(2)明確點(diǎn)斜式、斜截式方程的形式特點(diǎn)和適用范圍;初步學(xué)會(huì)準(zhǔn)確地使用直線的點(diǎn)斜式、斜截式方程 ;
(3)從實(shí)例入手,通過(guò)類比、推廣、特殊化等,使學(xué)生體會(huì)從特殊到一般再到特殊的認(rèn)知規(guī)律;
(4)提倡學(xué)生用舊知識(shí)解決新問(wèn)題,通過(guò)體會(huì)直線的斜截式方程與一次函數(shù)的關(guān)系等活動(dòng),培養(yǎng)學(xué)生主動(dòng)探究知識(shí)、合作交流的意識(shí),并初步了解數(shù)形結(jié)合在解析幾何中的應(yīng)用。
4. 教學(xué)重點(diǎn)與難點(diǎn)
(1)重點(diǎn): 直線點(diǎn)斜式、斜截式方程的特點(diǎn)及其初步應(yīng)用。
(2)難點(diǎn):直線的方程的概念,點(diǎn)斜式方程的推導(dǎo)及點(diǎn)斜式、斜截式方程的應(yīng)用。
二、教法學(xué)法分析
1.教法分析:根據(jù)學(xué)情,為了能調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“實(shí)例引導(dǎo)的啟發(fā)式”問(wèn)題教學(xué)法。幫助學(xué)生將幾何問(wèn)題代數(shù)化,用代數(shù)的語(yǔ)言描述直線的幾何要素及其關(guān)系,進(jìn)而將直線的問(wèn)題轉(zhuǎn)化為直線方程的問(wèn)題,通過(guò)對(duì)直線的方程的研究,最終解決有關(guān)直線的一些簡(jiǎn)單的問(wèn)題。另外可以恰當(dāng)?shù)睦枚嗝襟w課件進(jìn)行輔助教學(xué),激發(fā)學(xué)生的學(xué)習(xí)興趣。
2.學(xué)法分析:學(xué)生從問(wèn)題中嘗試、總結(jié)、質(zhì)疑、運(yùn)用,體會(huì)學(xué)習(xí)數(shù)學(xué)的樂(lè)趣;通過(guò)推導(dǎo)直線的點(diǎn)斜式方程的學(xué)習(xí),要了解用坐標(biāo)法求方程的思想;通過(guò)一個(gè)點(diǎn)和方向可以確定一條直線,進(jìn)而可求出直線的點(diǎn)斜式方程,要能體會(huì)“形”與“數(shù)”的轉(zhuǎn)化思想。
下面我就對(duì)具體的教學(xué)過(guò)程和設(shè)計(jì)加以說(shuō)明:
三、教學(xué)過(guò)程的設(shè)計(jì)及實(shí)施
整個(gè)教學(xué)過(guò)程是由六個(gè)問(wèn)題組成,共分為四個(gè)環(huán)節(jié),學(xué)習(xí)或涉及四個(gè)概念:
溫故知新,澄清概念----直線的方程
深入探究,獲得新知--------點(diǎn)斜式
拓展知識(shí),再獲新知--------斜截式
小結(jié)引申,思維延續(xù)--------兩點(diǎn)式
平面上的點(diǎn)可以用坐標(biāo)表示,直線的傾斜程度可以用斜率表示,那么平面上的直線如何表示呢?這就是本節(jié)要學(xué)習(xí)的內(nèi)容。
(一)溫故知新,澄清概念----直線的方程
問(wèn)題一:畫出一次函數(shù)y=2x+1的圖象;y=2x+1是一個(gè)方程嗎?若是,那么方程的解與圖象上的點(diǎn)的坐標(biāo)有何關(guān)系?
[學(xué)生活動(dòng)] 通過(guò)動(dòng)手畫圖,思考并嘗試用語(yǔ)言進(jìn)行初步的表述。
[教師活動(dòng)] 對(duì)于不同學(xué)生的`表述進(jìn)行分析、歸納,用規(guī)范的語(yǔ)言對(duì)方程和直線的方程進(jìn)行描述。
[設(shè)計(jì)意圖]從學(xué)生熟知的舊知識(shí)出發(fā)澄清直線的方程的概念,試圖做到“用學(xué)生已有的數(shù)學(xué)知識(shí)去學(xué)數(shù)學(xué)”,從而突破難點(diǎn)。通過(guò)對(duì)這個(gè)問(wèn)題的研究,一方面認(rèn)識(shí)到以方程的解為坐標(biāo)的點(diǎn)在直線上,另一方面認(rèn)識(shí)到直線上的點(diǎn)的坐標(biāo)滿足方程;從而使同學(xué)意識(shí)到直線可以由直線上任意一點(diǎn)P(x,y)的坐標(biāo)x和y之間的等量關(guān)系來(lái)表示。
問(wèn)題二:若直線經(jīng)過(guò)點(diǎn)A(-1, 3),斜率為-2,點(diǎn)P在直線l上。
(1) 若點(diǎn)P在直線l上從A點(diǎn)開始運(yùn)動(dòng),橫坐標(biāo)增加1時(shí),點(diǎn)P的坐標(biāo)是 ;
(2)畫出直線l,你能求出直線l的方程嗎?
(3)若點(diǎn)P在直線l上運(yùn)動(dòng),設(shè)P點(diǎn)的坐標(biāo)為(x,y),你會(huì)有什么方法找到x,y滿足的關(guān)系式?
[學(xué)生活動(dòng)]學(xué)生獨(dú)立思考5分鐘,必要的話可進(jìn)行分組討論、合作交流。
[教師活動(dòng)]巡視?隙▽W(xué)生的各種方法及大膽嘗試的行為;并引導(dǎo)學(xué)生觀察發(fā)現(xiàn),得到當(dāng)點(diǎn)P在直線l上運(yùn)動(dòng)時(shí)(除點(diǎn) A外),點(diǎn)P與定點(diǎn)A(-1, 3)所確定的直線的斜率恒等于-2,體會(huì)“動(dòng)中有靜”的思維策略。
[設(shè)計(jì)意圖]復(fù)習(xí)斜率公式;待定系數(shù)法;初步體會(huì)坐標(biāo)法。同時(shí)引導(dǎo)學(xué)生注意為什么要把分式化簡(jiǎn)?(若不化簡(jiǎn),就少一點(diǎn)),感受數(shù)學(xué)簡(jiǎn)潔的美感和嚴(yán)謹(jǐn)性。還要指出這樣的事實(shí):當(dāng)點(diǎn)P在直線l上運(yùn)動(dòng)時(shí),P的坐標(biāo)(x,y)滿足方程2x+y-1=0.反過(guò)來(lái),以方程2x+y-1=0的解為坐標(biāo)的點(diǎn)在直線l上。把學(xué)生的思維引到用坐標(biāo)法研究直線的方程上來(lái),此時(shí)再把問(wèn)題深入,進(jìn)入第二環(huán)節(jié)。
(二)深入探究,獲得新知----點(diǎn)斜式
問(wèn)題三: ① 若直線l經(jīng)過(guò)點(diǎn)P0(x0,y0),且斜率為k,求直線l的方程。
、谥本的點(diǎn)斜式方程能否表示經(jīng)過(guò)P0(x0,y0)的所有直線?
[學(xué)生活動(dòng)] ①學(xué)生敘述,老師板書,強(qiáng)調(diào)斜率公式與點(diǎn)斜式的區(qū)別。 ②指導(dǎo)學(xué)生用筆轉(zhuǎn)一轉(zhuǎn)不難發(fā)現(xiàn),當(dāng)直線l的傾斜角α=90°時(shí),斜率k不存在,當(dāng)然不存在點(diǎn)斜式方程;討論k=0的情況;觀察并總結(jié)點(diǎn)斜式方程的特征。
[設(shè)計(jì)意圖] 由特殊到一般的學(xué)習(xí)思路,突破難點(diǎn),培養(yǎng)學(xué)生的歸納概括能力。通過(guò)對(duì)這個(gè)問(wèn)題的探究使學(xué)生獲得直線點(diǎn)斜式方程;由②知:當(dāng)直線斜率k不存在時(shí),不能用點(diǎn)斜式方程表示直線,培養(yǎng)思維的嚴(yán)謹(jǐn)性,這時(shí)直線l與y軸平行,它上面的每一點(diǎn)的橫坐標(biāo)都等于x0,直線l的方程是:x=x0;通過(guò)學(xué)生的觀察討論總結(jié),明確點(diǎn)斜式方程的形式特點(diǎn)和適用范圍,通過(guò)下面的例題和基礎(chǔ)練習(xí),突破重難點(diǎn)。
問(wèn)題四:分別求經(jīng)過(guò)點(diǎn)且滿足下列條件的直線的方程
(1) 斜率;(2)傾斜角; (3)與軸平行 ;(4)與軸垂直。
[練習(xí)]P95.1、2。
[學(xué)生活動(dòng)]學(xué)生獨(dú)立完成并展示或敘述,老師點(diǎn)評(píng)。
[設(shè)計(jì)意圖]充分用好教材的例題和習(xí)題,因?yàn)檫@些題都是專家精心編排的,充分體現(xiàn)必要性及合理性;做到及時(shí)反饋,便于反思本環(huán)節(jié)的教學(xué),指導(dǎo)下個(gè)環(huán)節(jié)的安排;突破重點(diǎn)內(nèi)容后,進(jìn)入第三環(huán)節(jié)。
(三)拓展知識(shí),再獲新知----斜截式
問(wèn)題五:(1)一條直線與y軸交于點(diǎn)(0,3),直線的斜率為2,求這條直線的方程。
(2)若直線l斜率為k,且與y軸的交點(diǎn)是 P(0,b),求直線l的方程。
[學(xué)生活動(dòng)]學(xué)生獨(dú)立完成后口述,教師板書。
[設(shè)計(jì)意圖] 由一般到特殊再到一般,培養(yǎng)學(xué)生的推理能力,同時(shí)引出截距的概念及斜截式方程,強(qiáng)調(diào)截距不是距離。類比點(diǎn)斜式明確斜截式方程的形式特點(diǎn)和適用范圍及幾何意義,并討論其與一次函數(shù)的關(guān)系。通過(guò)下面的基礎(chǔ)練習(xí),突破重點(diǎn)。
[練習(xí)]P95.3。
[設(shè)計(jì)意圖]充分用好教材習(xí)題,及時(shí)反饋本環(huán)節(jié)的教學(xué)情況,指導(dǎo)下個(gè)環(huán)節(jié)的安排。
(四)小結(jié)引申,思維延續(xù)----兩點(diǎn)式
課堂小結(jié) 1、有哪些收獲?(點(diǎn)斜式方程:;斜截式方程:;求直線方程的方法:公式法、等斜率法、待定系數(shù)法。)
2、哪些地方還沒(méi)有學(xué)好?
問(wèn)題六:(1)直線l過(guò)(1,0)點(diǎn),且與直線平行,求直線l的方程。
(2)直線l過(guò)點(diǎn)(2,-1)和點(diǎn)(3,-3),求直線l的方程。
[學(xué)生活動(dòng)]學(xué)生獨(dú)立思考并嘗試自主完成,可以相互討論,探討解題思路。
[教師活動(dòng)]教師深入學(xué)生中,與學(xué)生交流,了解學(xué)生思考問(wèn)題的進(jìn)展過(guò)程,有時(shí)間的話,可以讓學(xué)生口述解題思路,也可以投影學(xué)生的證明過(guò)程,糾正出現(xiàn)的錯(cuò)誤,規(guī)范書寫的格式;沒(méi)時(shí)間就布置分層作業(yè)。
[設(shè)計(jì)意圖](1)小題與上一節(jié)的平行綜合,學(xué)生應(yīng)該有思路求出方程;(2)小題解決方法較多,預(yù)設(shè)有利用公式法、等斜率法、待定系數(shù)法,讓好一點(diǎn)的學(xué)生有一些發(fā)散思維的機(jī)會(huì),以及課后學(xué)習(xí)的空間,使探究氣氛有一點(diǎn)高潮。另外也為下節(jié)課研究直線的兩點(diǎn)式方程作了重要的準(zhǔn)備。
分層作業(yè) 必做題:P100.A組:1.(1)(2)(3)、5.
選做題:P100.A組:1.(4)(5)(6).
[設(shè)計(jì)意圖]通過(guò)分層作業(yè),做到因材施教,使不同的學(xué)生在數(shù)學(xué)上得到不同的發(fā)展,讓每一個(gè)學(xué)生都得到符合自身實(shí)踐的感悟,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,促進(jìn)學(xué)生自主發(fā)展。
四、教學(xué)特點(diǎn)分析
(一)實(shí)例引導(dǎo)。在字母運(yùn)算、公式推導(dǎo)之前,總是用實(shí)例作為鋪墊,使學(xué)生有學(xué)習(xí)知識(shí)的可能和興趣,關(guān)注學(xué)困生的成長(zhǎng)與發(fā)展。
(二)啟發(fā)式教學(xué)。教學(xué)中總是以提問(wèn)的方式敘述所學(xué)內(nèi)容,如:1.直角坐標(biāo)系內(nèi)的所有直線都有點(diǎn)斜式方程嗎?2.截距是距離嗎?它可以是負(fù)數(shù)嗎?3.你會(huì)求直線在軸上的截距嗎?4.觀察方程 ,它的形式具有什么特點(diǎn)?它與我們學(xué)過(guò)的一次函數(shù)有什么關(guān)系?等等。啟發(fā)學(xué)生的思維,作好與學(xué)生的對(duì)話與交流活動(dòng)。
(三)注重自主探究。設(shè)計(jì)問(wèn)題鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終。教師總是站在學(xué)生思維的最近發(fā)展區(qū)上,布設(shè)了由淺入深的學(xué)習(xí)環(huán)境突破重點(diǎn)、難點(diǎn),引導(dǎo)學(xué)生逐步發(fā)現(xiàn)知識(shí)的形成過(guò)程。設(shè)計(jì)了兩次思維發(fā)散點(diǎn),分別是問(wèn)題二和問(wèn)題六的第(2)問(wèn),要求學(xué)生分組討論,合作交流,為學(xué)生創(chuàng)造充分的探究空間,學(xué)生在交流成果的過(guò)程中,高效的完成教學(xué)任務(wù)。
高中數(shù)學(xué)說(shuō)課稿 篇5
一、教材分析
(一)教材的地位和作用
“一元二次不等式解法”既是初中一元一次不等式解法在知識(shí)上的延伸和發(fā)展,又是本章集合知識(shí)的運(yùn)用與鞏固,也為下一章函數(shù)的定義域和值域教學(xué)作鋪墊,起著鏈條的作用。同時(shí),這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識(shí)的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊(yùn)含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識(shí)。
(二)教學(xué)內(nèi)容
本節(jié)內(nèi)容分2課時(shí)學(xué)習(xí)。本課時(shí)通過(guò)二次函數(shù)的圖象探索一元二次不等式的解集。通過(guò)復(fù)習(xí)“三個(gè)一次”的關(guān)系,即一次函數(shù)與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個(gè)二次”的關(guān)系,即二次函數(shù)與一元二次方程、一元二次不等式的關(guān)系;采用“畫、看、說(shuō)、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學(xué)中的和諧美,體驗(yàn)成功的樂(lè)趣。
二、教學(xué)目標(biāo)分析
根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點(diǎn)和高一學(xué)生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:
知識(shí)目標(biāo)——理解“三個(gè)二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。
能力目標(biāo)——通過(guò)看圖象找解集,培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。
情感目標(biāo)——?jiǎng)?chuàng)設(shè)問(wèn)題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強(qiáng)化學(xué)生參與意識(shí)及主體作用。
三、重難點(diǎn)分析
一元二次不等式是高中數(shù)學(xué)中最基本的不等式之一,是解決許多數(shù)學(xué)問(wèn)題的重要工具。本節(jié)課的重點(diǎn)確定為:一元二次不等式的解法。
要把握這個(gè)重點(diǎn)。關(guān)鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數(shù)形結(jié)合的思想方法認(rèn)識(shí)方程的解,不等式的解集與函數(shù)圖象上對(duì)應(yīng)點(diǎn)的橫坐標(biāo)的內(nèi)在聯(lián)系。由于初中沒(méi)有專門研究過(guò)這類問(wèn)題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點(diǎn)確定為:“三個(gè)二次”的關(guān)系。要突破這個(gè)難點(diǎn),讓學(xué)生歸納“三個(gè)一次”的關(guān)系作鋪墊。
四、教法與學(xué)法分析
(一)學(xué)法指導(dǎo)
教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會(huì)學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會(huì)學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動(dòng)手畫、動(dòng)眼看、動(dòng)腦想、動(dòng)口說(shuō)、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機(jī)會(huì),教給了學(xué)生獲取知識(shí)的途徑、思考問(wèn)題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會(huì)逐步感受到數(shù)學(xué)的美,會(huì)產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時(shí)代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。
(二)教法分析
本節(jié)課設(shè)計(jì)的指導(dǎo)思想是:現(xiàn)代認(rèn)知心理學(xué)——建構(gòu)主義學(xué)習(xí)理論。
建構(gòu)主義學(xué)習(xí)理論認(rèn)為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動(dòng)的建構(gòu)活動(dòng),學(xué)生應(yīng)與一定的知識(shí)背景即情景相聯(lián)系,在實(shí)際情景下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識(shí)與經(jīng)驗(yàn)同化和索引出當(dāng)前要學(xué)習(xí)的新知識(shí),這樣獲取的知識(shí),不但便于保持,而且易于遷移到陌生的問(wèn)題情景中。
本節(jié)課采用“誘思引探教學(xué)法”。把問(wèn)題作為出發(fā)點(diǎn),指導(dǎo)學(xué)生“畫、看、說(shuō)、用”。較好地探求一元二次不等式的解法。
五、課堂設(shè)計(jì)
本節(jié)課的教學(xué)設(shè)計(jì)充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)理論聯(lián)系實(shí)際、循序漸進(jìn)和因材施教的教學(xué)原則,通過(guò)問(wèn)題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問(wèn)題解決的探索過(guò)程中,由學(xué)會(huì)走向會(huì)學(xué),由被動(dòng)答題走向主動(dòng)探究。
(一)創(chuàng)設(shè)情景,引出“三個(gè)一次”的關(guān)系
本節(jié)課開始,先讓學(xué)生解一元二次方程x2-x-6=0,如果我把“=”改成“>”則變成一元二次不等式x2-x-6>0讓學(xué)生解,學(xué)生肯定感到很突然。但是“思維往往是從驚奇和疑問(wèn)開始”,這樣直奔主題,目的在于構(gòu)造懸念,激活學(xué)生的思維興趣。
為此,我設(shè)計(jì)了以下幾個(gè)問(wèn)題:
1、請(qǐng)同學(xué)們解以下方程和不等式:
、2x-7=0;②2x-7>0;③2x-7<0
學(xué)生回答,我板書
【有關(guān)高中數(shù)學(xué)說(shuō)課稿合集五篇】相關(guān)文章:
有關(guān)高中數(shù)學(xué)說(shuō)課稿合集8篇07-19
有關(guān)高中數(shù)學(xué)說(shuō)課稿合集六篇07-15
有關(guān)高中數(shù)學(xué)說(shuō)課稿合集八篇07-24
有關(guān)高中數(shù)學(xué)說(shuō)課稿范文合集10篇07-19
有關(guān)高中數(shù)學(xué)說(shuō)課稿合集十篇06-26
有關(guān)高中數(shù)學(xué)說(shuō)課稿范文合集9篇08-01
有關(guān)高中數(shù)學(xué)說(shuō)課稿范文合集5篇07-31