關(guān)于高中數(shù)學(xué)說(shuō)課稿集錦六篇
作為一無(wú)名無(wú)私奉獻(xiàn)的教育工作者,常常要根據(jù)教學(xué)需要編寫(xiě)說(shuō)課稿,寫(xiě)說(shuō)課稿能有效幫助我們總結(jié)和提升講課技巧。優(yōu)秀的說(shuō)課稿都具備一些什么特點(diǎn)呢?以下是小編為大家收集的高中數(shù)學(xué)說(shuō)課稿6篇,希望對(duì)大家有所幫助。
高中數(shù)學(xué)說(shuō)課稿 篇1
一、地位作用
數(shù)列是高中數(shù)學(xué)重要的內(nèi)容之一,等比數(shù)列是在學(xué)習(xí)了等差數(shù)列后新的一種特殊數(shù)列,在生活中如儲(chǔ)蓄、分期付款等應(yīng)用較為廣泛,在整個(gè)高中數(shù)學(xué)內(nèi)容中數(shù)列與已學(xué)過(guò)的函數(shù)及后面的數(shù)列極限有密切聯(lián)系,它也是培養(yǎng)學(xué)生數(shù)學(xué)能力的良好題材,它可以培養(yǎng)學(xué)生的觀察、分析、歸納、猜想及綜合解決問(wèn)題的能力。
基于此,設(shè)計(jì)本節(jié)的數(shù)學(xué)思路上:
利用類比的思想,聯(lián)系等差數(shù)列的概念及通項(xiàng)公式的學(xué)習(xí)方法,采取自學(xué)、引導(dǎo)、歸納、猜想、類比總結(jié)的教學(xué)思路,充分發(fā)揮學(xué)生主觀能動(dòng)性,調(diào)動(dòng)學(xué)生的主體地位,充分體現(xiàn)教為主導(dǎo)、學(xué)為主體、練為主線的教學(xué)思想。
二、教學(xué)目標(biāo)
知識(shí)目標(biāo):1)理解等比數(shù)列的概念
2)掌握等比數(shù)列的通項(xiàng)公式
3)并能用公式解決一些實(shí)際問(wèn)題
能力目標(biāo):培養(yǎng)學(xué)生觀察能力及發(fā)現(xiàn)意識(shí),培養(yǎng)學(xué)生運(yùn)用類比思想、解決分析問(wèn)題的能力。
三、教學(xué)重點(diǎn)
1)等比數(shù)列概念的理解與掌握 關(guān)鍵:是讓學(xué)生理解“等比”的特點(diǎn)
2)等比數(shù)列的通項(xiàng)公式的推導(dǎo)及應(yīng)用
四、教學(xué)難點(diǎn)
“等比”的理解及利用通項(xiàng)公式解決一些問(wèn)題。
五、教學(xué)過(guò)程設(shè)計(jì)
(一)預(yù)習(xí)自學(xué)環(huán)節(jié)。(8分鐘)
首先讓學(xué)生重新閱讀課本105頁(yè)國(guó)際象棋發(fā)明者的故事,并出示預(yù)習(xí)提綱,要求學(xué)生閱讀課本P122至P123例1上面。
回答下列問(wèn)題
1)課本中前3個(gè)實(shí)例有什么特點(diǎn)?能否舉出其它例子,并給出等比數(shù)列的定義。
2)觀察以下幾個(gè)數(shù)列,回答下面問(wèn)題:
1, , , ,……
。1,-2,-4,-8……
1,2,-4,8……
。1,-1,-1,-1,……
1,0,1,0……
、儆心膸讉(gè)是等比數(shù)列?若是公比是什么?
②公比q為什么不能等于零?首項(xiàng)能為零嗎?
、酃萹=1時(shí)是什么數(shù)列?
、躴>0時(shí)數(shù)列遞增嗎?q<0時(shí)遞減嗎?
3)怎樣推導(dǎo)等比數(shù)列通項(xiàng)公式?課本中采取了什么方法?還可以怎樣推導(dǎo)?
4)等比數(shù)列通項(xiàng)公式與函數(shù)關(guān)系怎樣?
(二)歸納主導(dǎo)與總結(jié)環(huán)節(jié)(15分鐘)
這一環(huán)節(jié)主要是通過(guò)學(xué)生回答為主體,教師引導(dǎo)總結(jié)為主線解決本節(jié)兩個(gè)重點(diǎn)內(nèi)容。
通過(guò)回答問(wèn)題(1)(2)給出等比數(shù)列的定義并強(qiáng)調(diào)以下幾點(diǎn):①定義關(guān)鍵字“第二項(xiàng)起”“常數(shù)”;
②引導(dǎo)學(xué)生用數(shù)學(xué)語(yǔ)言表達(dá)定義: =q(n≥2);③q=1時(shí)為非零常數(shù)數(shù)列,既是等差數(shù)列又是等比數(shù)列。引申:若數(shù)列公比為字母,分q=1和q≠1兩種情況;引入分類討論的思想。
、躴>0時(shí)等比數(shù)列單調(diào)性不定,q<0為擺動(dòng)數(shù)列,類比等差數(shù)列d>0為遞增數(shù)列,d<0為遞減數(shù)列。
通過(guò)回答問(wèn)題(3)回憶等差數(shù)列的推導(dǎo)方法,比較兩個(gè)數(shù)列定義的不同,引導(dǎo)推出等比數(shù)列通項(xiàng)公式。
法一:歸納法,學(xué)會(huì)從特殊到一般的方法,并從次數(shù)中發(fā)現(xiàn)規(guī)律,培養(yǎng)觀察力。
法二:迭乘法,聯(lián)系等差數(shù)列“迭加法”,培養(yǎng)學(xué)生類比能力及新舊知識(shí)轉(zhuǎn)化能力。
高中數(shù)學(xué)說(shuō)課稿 篇2
說(shuō)課內(nèi)容:普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)(人教A版)《數(shù)學(xué)必修4》第二章第四節(jié)“平面向量的數(shù)量積”的第一課時(shí)---平面向量數(shù)量積的物理背景及其含義。
下面,我從背景分析、教學(xué)目標(biāo)設(shè)計(jì)、課堂結(jié)構(gòu)設(shè)計(jì)、教學(xué)過(guò)程設(shè)計(jì)、教學(xué)媒體設(shè)計(jì)及教學(xué)評(píng)價(jià)設(shè)計(jì)六個(gè)方面對(duì)本節(jié)課的思考進(jìn)行說(shuō)明。
一、 背景分析
1、學(xué)習(xí)任務(wù)分析
平面向量的數(shù)量積是繼向量的線性運(yùn)算之后的又一重要運(yùn)算,也是高中數(shù)學(xué)的一個(gè)重要概念,在數(shù)學(xué)、物理等學(xué)科中應(yīng)用十分廣泛。本節(jié)內(nèi)容教材共安排兩課時(shí),其中第一課時(shí)主要研究數(shù)量積的概念,第二課時(shí)主要研究數(shù)量積的坐標(biāo)運(yùn)算,本節(jié)課是第一課時(shí)。
本節(jié)課的主要學(xué)習(xí)任務(wù)是通過(guò)物理中“功”的事例抽象出平面向量數(shù)量積的概念,在此基礎(chǔ)上探究數(shù)量積的性質(zhì)與運(yùn)算律,使學(xué)生體會(huì)類比的思想方法,進(jìn)一步培養(yǎng)學(xué)生的抽象概括和推理論證的能力。其中數(shù)量積的概念既是對(duì)物理背景的抽象,又是研究性質(zhì)和運(yùn)算律的基礎(chǔ)。同時(shí)也因?yàn)樵谶@個(gè)概念中,既有長(zhǎng)度又有角度,既有形又有數(shù),是代數(shù)、幾何與三角的最佳結(jié)合點(diǎn),不僅應(yīng)用廣泛,而且很好的體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,使得數(shù)量積的概念成為本節(jié)課的核心概念,自然也是本節(jié)課教學(xué)的重點(diǎn)。
2、學(xué)生情況分析
學(xué)生在學(xué)習(xí)本節(jié)內(nèi)容之前,已熟知了實(shí)數(shù)的運(yùn)算體系,掌握了向量的概念及其線性運(yùn)算,具備了功等物理知識(shí),并且初步體會(huì)了研究向量運(yùn)算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再?gòu)母拍畛霭l(fā),在與實(shí)數(shù)運(yùn)算類比的基礎(chǔ)上研究性質(zhì)和運(yùn)算律。這為學(xué)生學(xué)習(xí)數(shù)量積做了很好的鋪墊,使學(xué)生倍感親切。但也正是這些干擾了學(xué)生對(duì)數(shù)量積概念的理解,一方面,相對(duì)于線性運(yùn)算而言,數(shù)量積的結(jié)果發(fā)生了本質(zhì)的變化,兩個(gè)有形有數(shù)的向量經(jīng)過(guò)數(shù)量積運(yùn)算后,形卻消失了,學(xué)生對(duì)這一點(diǎn)是很難接受的;另一方面,由于受實(shí)數(shù)乘法運(yùn)算的影響,也會(huì)造成學(xué)生對(duì)數(shù)量積理解上的偏差,特別是對(duì)性質(zhì)和運(yùn)算律的理解。因而本節(jié)課教學(xué)的難點(diǎn)數(shù)量積的概念。
二、 教學(xué)目標(biāo)設(shè)計(jì)
《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn))》 對(duì)本節(jié)課的要求有以下三條:
(1)通過(guò)物理中“功”等事例,理解平面向量數(shù)量積的含義及其物理意義。
(2)體會(huì)平面向量的數(shù)量積與向量投影的關(guān)系。
(3)能用運(yùn)數(shù)量積表示兩個(gè)向量的夾角,會(huì)用數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系。
從以上的背景分析可以看出,數(shù)量積的概念既是本節(jié)課的重點(diǎn),也是難點(diǎn)。為了突破這一難點(diǎn),首先無(wú)論是在概念的引入還是應(yīng)用過(guò)程中,物理中“功”的實(shí)例都發(fā)揮了重要作用。其次,作為數(shù)量積概念延伸的性質(zhì)和運(yùn)算律,不僅能夠使學(xué)生更加全面深刻地理解概念,同時(shí)也是進(jìn)行相關(guān)計(jì)算和判斷的理論依據(jù)。最后,無(wú)論是數(shù)量積的性質(zhì)還是運(yùn)算律,都希望學(xué)生在類比的基礎(chǔ)上,通過(guò)主動(dòng)探究來(lái)發(fā)現(xiàn),因而對(duì)培養(yǎng)學(xué)生的抽象概括能力、推理論證能力和類比思想都無(wú)疑是很好的載體。
綜上所述,結(jié)合“課標(biāo)”要求和學(xué)生實(shí)際,我將本節(jié)課的教學(xué)目標(biāo)定為:
1、了解平面向量數(shù)量積的物理背景,理解數(shù)量積的含義及其物理意義;
2、體會(huì)平面向量的數(shù)量積與向量投影的關(guān)系,掌握數(shù)量積的性質(zhì)和運(yùn)算律,
并能運(yùn)用性質(zhì)和運(yùn)算律進(jìn)行相關(guān)的運(yùn)算和判斷;
3、體會(huì)類比的數(shù)學(xué)思想和方法,進(jìn)一步培養(yǎng)學(xué)生抽象概括、推理論證的能力。
三、課堂結(jié)構(gòu)設(shè)計(jì)
本節(jié)課從總體上講是一節(jié)概念教學(xué),依據(jù)數(shù)學(xué)課程改革應(yīng)關(guān)注知識(shí)的發(fā)生和發(fā)展過(guò)程的理念,結(jié)合本節(jié)課的知識(shí)的邏輯關(guān)系,我按照以下順序安排本節(jié)課的教學(xué):
即先從數(shù)學(xué)和物理兩個(gè)角度創(chuàng)設(shè)問(wèn)題情景,通過(guò)歸納和抽象得到數(shù)量積的概念,在此基礎(chǔ)上研究數(shù)量積的性質(zhì)和運(yùn)算律,使學(xué)生進(jìn)一步加深對(duì)概念的理解,然后通過(guò)例題和練習(xí)使學(xué)生鞏固概念,加深印象,最后通過(guò)課堂小結(jié)提高學(xué)生認(rèn)識(shí),形成知識(shí)體系。
四、 教學(xué)媒體設(shè)計(jì)
和“大綱”教材相比,“課標(biāo)”教材在本節(jié)課的內(nèi)容安排上,雖然將向量的夾角在“平面向量基本定理”一節(jié)提前做了介紹,但卻將原來(lái)分兩節(jié)課完成的內(nèi)容合并成一節(jié),相比較而言本節(jié)課的教學(xué)任務(wù)加重了許多。為了保證教學(xué)任務(wù)的完成,順利實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),考慮到本節(jié)課的實(shí)際特點(diǎn),在教學(xué)媒體的使用上,我的設(shè)想主要有以下兩點(diǎn):
1、制作高效實(shí)用的電腦多媒體課件,主要作用是改變相關(guān)內(nèi)容的呈現(xiàn)方式,以此來(lái)節(jié)約課時(shí),增加課堂容量。
2、設(shè)計(jì)科學(xué)合理的板書(shū)(見(jiàn)下),一方面使學(xué)生加深對(duì)主要知識(shí)的印象,另一方面使學(xué)生清楚本節(jié)內(nèi)容知識(shí)間的邏輯關(guān)系,形成知識(shí)網(wǎng)絡(luò)。
平面向量數(shù)量積的物理背景及其含義
一、 數(shù)量積的概念 二、數(shù)量積的性質(zhì) 四、應(yīng)用與提高
1、 概念: 例1:
2、 概念強(qiáng)調(diào) (1)記法 例2:
(2)“規(guī)定” 三、數(shù)量積的運(yùn)算律 例3:
3、幾何意義:
4、物理意義:
五、 教學(xué)過(guò)程設(shè)計(jì)
課標(biāo)指出:數(shù)學(xué)教學(xué)過(guò)程是教師引導(dǎo)學(xué)生進(jìn)行學(xué)習(xí)活動(dòng)的過(guò)程,是教師和學(xué)生間互動(dòng)的過(guò)程,是師生共同發(fā)展的過(guò)程。為有序、有效地進(jìn)行教學(xué),本節(jié)課我主要安排以下六個(gè)活動(dòng):
活動(dòng)一:創(chuàng)設(shè)問(wèn)題情景,激發(fā)學(xué)習(xí)興趣
正如教材主編寄語(yǔ)所言,數(shù)學(xué)是自然的,而不是強(qiáng)加于人的。平面向量的數(shù)量積這一重要概念,和向量的線性運(yùn)算一樣,也有其數(shù)學(xué)背景和物理背景,為了體現(xiàn)這一點(diǎn),我設(shè)計(jì)以下幾個(gè)問(wèn)題:
問(wèn)題1:我們已經(jīng)研究了向量的哪些運(yùn)算?這些運(yùn)算的結(jié)果是什么?
問(wèn)題2:我們是怎么引入向量的加法運(yùn)算的?我們又是按照怎樣的順序研究了這種運(yùn)算的?
期望學(xué)生回答:物理模型→概念→性質(zhì)→運(yùn)算律→應(yīng)用
問(wèn)題3:如圖所示,一物體在力F的作用下產(chǎn)生位移S,
(1)力F所做的功W= 。
(2)請(qǐng)同學(xué)們分析這個(gè)公式的特點(diǎn):
W(功)是 量,
F(力)是 量,
S(位移)是 量,
α是 。
問(wèn)題1的設(shè)計(jì)意圖在于使學(xué)生了解數(shù)量積的數(shù)學(xué)背景,讓學(xué)生明白本節(jié)課所要研究的數(shù)量積與向量的加法、減法及數(shù)乘一樣,都是向量的運(yùn)算,但與向量的線性運(yùn)算相比,數(shù)量積運(yùn)算又有其特殊性,那就是其結(jié)果發(fā)生了本質(zhì)的變化。
問(wèn)題2的設(shè)計(jì)意圖在于使學(xué)生在與向量加法類比的基礎(chǔ)上明了本節(jié)課的研究方法和順序,為教學(xué)活動(dòng)指明方向。
問(wèn)題3的設(shè)計(jì)意圖在于使學(xué)生了解數(shù)量積的物理背景,讓學(xué)生知道,我們研究數(shù)量積絕不僅僅是為了數(shù)學(xué)自身的完善,而是有其客觀背景和現(xiàn)實(shí)意義的,從而產(chǎn)生了進(jìn)一步研究這種新運(yùn)算的愿望。同時(shí),也為抽象數(shù)量積的概念做好鋪墊。
活動(dòng)二:探究數(shù)量積的概念
1、概念的抽象
在分析“功”的計(jì)算公式的基礎(chǔ)上提出問(wèn)題4
問(wèn)題4:你能用文字語(yǔ)言來(lái)表述功的計(jì)算公式嗎?如果我們將公式中的力與位移推廣到一般向量,其結(jié)果又該如何表述?
學(xué)生通過(guò)思考不難回答:功是力與位移的大小及其夾角余弦的乘積;兩個(gè)向量的大小及其夾角余弦的乘積。這樣,學(xué)生事實(shí)上已經(jīng)得到數(shù)量積概念的文字表述了,在此基礎(chǔ)上,我進(jìn)一步明晰數(shù)量積的概念。
2、概念的明晰
已知兩個(gè)非零向量
與
,它們的夾角為
,我們把數(shù)量 ︱
︱·︱
︱cos
叫做
與
的數(shù)量積(或內(nèi)積),記作:
·
,即:
·
= ︱
︱·︱
︱cos
在強(qiáng)調(diào)記法和“規(guī)定”后 ,為了讓學(xué)生進(jìn)一步認(rèn)識(shí)這一概念,提出問(wèn)題5
問(wèn)題5:向量的數(shù)量積運(yùn)算與線性運(yùn)算的結(jié)果有什么不同?影響數(shù)量積大小的因素有哪些?并完成下表:
角
的范圍0°≤
<90°
=90°0°<
≤180°
·
的符號(hào)
通過(guò)此環(huán)節(jié)不僅使學(xué)生認(rèn)識(shí)到數(shù)量積的結(jié)果與線性運(yùn)算的結(jié)果有著本質(zhì)的不同,而且認(rèn)識(shí)到向量的夾角是決定數(shù)量積結(jié)果的重要因素,為下面更好地理解數(shù)量積的性質(zhì)和運(yùn)算律做好鋪墊。
3、探究數(shù)量積的幾何意義
這個(gè)問(wèn)題教材是這樣安排的:在給出向量數(shù)量積的概念后,只介紹了向量投影的定義,直到講完例1后,為了證明運(yùn)算律的第三條才直接以結(jié)論的形式呈現(xiàn)給學(xué)生,我覺(jué)得這樣安排似乎不太自然,還不如在給出向量投影的概念后,直接由學(xué)生自己歸納得出,所以做了調(diào)整。為此,我首先給出給出向量投影的概念,然后提出問(wèn)題5。
如圖,我們把│
│cos
(│
│cos
)叫做向量
在
方向上(
在
方向上)的投影,記做:OB1=│
│cos
問(wèn)題6:數(shù)量積的幾何意義是什么?
這樣做不僅讓學(xué)生從“形”的角度重新認(rèn)識(shí)數(shù)量積的概念,從中體會(huì)數(shù)量積與向量投影的關(guān)系,同時(shí)也更符合知識(shí)的連貫性,而且也節(jié)約了課時(shí)。
4、研究數(shù)量積的物理意義
數(shù)量積的概念是由物理中功的概念引出的,學(xué)習(xí)了數(shù)量積的概念后,學(xué)生就會(huì)明白功的數(shù)學(xué)本質(zhì)就是力與位移的數(shù)量積。為此,我設(shè)計(jì)以下問(wèn)題 一方面使學(xué)生嘗試計(jì)算數(shù)量積,另一方面使學(xué)生理解數(shù)量積的物理意義,同時(shí)也為數(shù)量積的性質(zhì)埋下伏筆。
問(wèn)題7:
(1) 請(qǐng)同學(xué)們用一句話來(lái)概括功的數(shù)學(xué)本質(zhì):功是力與位移的數(shù)量積 。
(2)嘗試練習(xí):一物體質(zhì)量是10千克,分別做以下運(yùn)動(dòng):
①、在水平面上位移為10米;
②、豎直下降10米;
、、豎直向上提升10米;
、、沿傾角為30度的斜面向上運(yùn)動(dòng)10米;
分別求重力做的功。
活動(dòng)三:探究數(shù)量積的運(yùn)算性質(zhì)
1、性質(zhì)的發(fā)現(xiàn)
教材中關(guān)于數(shù)量積的三條性質(zhì)是以探究的形式出現(xiàn)的,為了很好地完成這一探究活動(dòng),在完成上述練習(xí)后,我不失時(shí)機(jī)地提出問(wèn)題8:
(1)將嘗試練習(xí)中的① ② ③的結(jié)論推廣到一般向量,你能得到哪些結(jié)論?
(2)比較︱
·
︱與︱
︱×︱
︱的大小,你有什么結(jié)論?
在學(xué)生討論交流的基礎(chǔ)上,教師進(jìn)一步明晰數(shù)量積的性質(zhì),然后再由學(xué)生利用數(shù)量積的定義給予證明,完成探究活動(dòng)。
2、明晰數(shù)量積的性質(zhì)
3、性質(zhì)的證明
這樣設(shè)計(jì)體現(xiàn)了教師只是教學(xué)活動(dòng)的引領(lǐng)者,而學(xué)生才是學(xué)習(xí)活動(dòng)的主體,讓學(xué)生成為學(xué)習(xí)的研究者,不斷地體驗(yàn)到成功的喜悅,激發(fā)學(xué)生參與學(xué)習(xí)活動(dòng)的熱情,不僅使學(xué)生獲得了知識(shí),更培養(yǎng)了學(xué)生由特殊到一般的思維品質(zhì)。
活動(dòng)四:探究數(shù)量積的運(yùn)算律
1、運(yùn)算律的發(fā)現(xiàn)
關(guān)于運(yùn)算律,教材仍然是以探究的形式出現(xiàn),為此,首先提出問(wèn)題9
問(wèn)題9:我們學(xué)過(guò)了實(shí)數(shù)乘法的哪些運(yùn)算律?這些運(yùn)算律對(duì)向量是否也適用?
通過(guò)此問(wèn)題主要是想使學(xué)生在類比的基礎(chǔ)上,猜測(cè)提出數(shù)量積的運(yùn)算律。
學(xué)生可能會(huì)提出以下猜測(cè): ①
·
=
·
、(
·
)
=
(
·
) ③(
+
)·
=
·
+
·
猜測(cè)①的正確性是顯而易見(jiàn)的。
關(guān)于猜測(cè)②的正確性,我提示學(xué)生思考下面的問(wèn)題:
猜測(cè)②的左右兩邊的結(jié)果各是什么?它們一定相等嗎?
學(xué)生通過(guò)討論不難發(fā)現(xiàn),猜測(cè)②是不正確的。
這時(shí)教師在肯定猜測(cè)③的基礎(chǔ)上明晰數(shù)量積的運(yùn)算律:
2、明晰數(shù)量積的運(yùn)算律
3、證明運(yùn)算律
學(xué)生獨(dú)立證明運(yùn)算律(2)
我把運(yùn)算運(yùn)算律(2)的證明交給學(xué)生完成,在證明時(shí),學(xué)生可能只考慮到λ>0的情況,為了幫助學(xué)生完善證明,提出以下問(wèn)題:
當(dāng)λ<0時(shí),向量
與λ
,
與λ
的方向 的關(guān)系如何?此時(shí),向量λ
與
及
與λ
的夾角與向量
與
的夾角相等嗎?
師生共同證明運(yùn)算律(3)
運(yùn)算律(3)的證明對(duì)學(xué)生來(lái)說(shuō)是比較困難的,為了節(jié)約課時(shí),這個(gè)證明由師生共同完成,我想這也是教材的本意。
在這個(gè)環(huán)節(jié)中,我仍然是首先為學(xué)生創(chuàng)設(shè)情景,讓學(xué)生在類比的基礎(chǔ)上進(jìn)行猜想歸納,然后教師明晰結(jié)論,最后再完成證明,這樣做不僅培養(yǎng)了學(xué)生推理論證的能力,同時(shí)也增強(qiáng)了學(xué)生類比創(chuàng)新的意識(shí),將知識(shí)的獲得和能力的培養(yǎng)有機(jī)的結(jié)合在一起。
活動(dòng)五:應(yīng)用與提高
例1、(師生共同完成)已知︱
︱=6,︱
︱=4,
與
的夾角為60°,求
(
+2
)·(
-3
),并思考此運(yùn)算過(guò)程類似于哪種運(yùn)算?
例2、(學(xué)生獨(dú)立完成)對(duì)任意向量
,b是否有以下結(jié)論:
(1)(
+
)2=
2+2
·
+
2
(2)(
+
)·(
-
)=
2—
2
例3、(師生共同完成)已知︱
︱=3,︱
︱=4, 且
與
不共線,k為何值時(shí),向量
+k
與
-k
互相垂直?并思考:通過(guò)本題你有什么收獲?
本節(jié)教材共安排了四道例題,我根據(jù)學(xué)生實(shí)際選擇了其中的三道,并對(duì)例1和例3增加了題后反思。例1是數(shù)量積的性質(zhì)和運(yùn)算律的綜合應(yīng)用,教學(xué)時(shí),我重點(diǎn)從對(duì)運(yùn)算原理的分析和運(yùn)算過(guò)程的規(guī)范書(shū)寫(xiě)兩個(gè)方面加強(qiáng)示范。完成計(jì)算后,進(jìn)一步提出問(wèn)題:此運(yùn)算過(guò)程類似于哪種運(yùn)算?目的是想讓學(xué)生在類比多項(xiàng)式乘法的基礎(chǔ)上自己猜測(cè)提出例2給出的兩個(gè)公式,再由學(xué)生獨(dú)立完成證明,一方面這并不困難,另一方面培養(yǎng)了學(xué)生通過(guò)類比這一思維模式達(dá)到創(chuàng)新的目的。例3的主要作用是,在繼續(xù)鞏固性質(zhì)和運(yùn)算律的同時(shí),教給學(xué)生如何利用數(shù)量積來(lái)判斷兩個(gè)向量的垂直,是平面向量數(shù)量積的基本應(yīng)用之一,教學(xué)時(shí)重點(diǎn)給學(xué)生分析數(shù)與形的轉(zhuǎn)化原理。
為了使學(xué)生更好的理解數(shù)量積的含義,熟練掌握性質(zhì)及運(yùn)算律,并能夠應(yīng)用數(shù)量積解決有關(guān)問(wèn)題,再安排如下練習(xí):
1、 下列兩個(gè)命題正確嗎?為什么?
、、若
≠0,則對(duì)任一非零向量
,有
·
≠0.
②、若
≠0,
·
=
·
,則
=
.
2、已知△ABC中,
=
,
=
,當(dāng)
·
<0或
·
=0時(shí),試判斷△ABC的形狀。
安排練習(xí)1的主要目的是,使學(xué)生在與實(shí)數(shù)乘法比較的基礎(chǔ)上全面認(rèn)識(shí)數(shù)量積這一重要運(yùn)算,
通過(guò)練習(xí)2使學(xué)生學(xué)會(huì)用數(shù)量積表示兩個(gè)向量的夾角,進(jìn)一步感受數(shù)量積的應(yīng)用價(jià)值。
活動(dòng)六:小結(jié)提升與作業(yè)布置
1、本節(jié)課我們學(xué)習(xí)的主要內(nèi)容是什么?
2、平面向量數(shù)量積的兩個(gè)基本應(yīng)用是什么?
3、我們是按照怎樣的思維模式進(jìn)行概念的歸納和性質(zhì)的探究?在運(yùn)算律的探究過(guò)程中,滲透了哪些數(shù)學(xué)思想?
4、類比向量的線性運(yùn)算,我們還應(yīng)該怎樣研究數(shù)量積?
通過(guò)上述問(wèn)題,使學(xué)生不僅對(duì)本節(jié)課的知識(shí)、技能及方法有了更加全面深刻的認(rèn)識(shí),同時(shí)也為下
一節(jié)做好鋪墊,繼續(xù)激發(fā)學(xué)生的求知欲。
布置作業(yè):
1、課本P121習(xí)題2.4A組1、2、3。
2、拓展與提高:
已知
與
都是非零向量,且
+3
與7
-5
垂直,
-4
與 7
-2
垂直求
與
的夾角。
在這個(gè)環(huán)節(jié)中,我首先考慮檢測(cè)全體學(xué)生是否都達(dá)到了“課標(biāo)”的基本要求,因此安排了一組教材中的習(xí)題,目的是讓所有的學(xué)生繼續(xù)加深對(duì)數(shù)量積概念的理解和應(yīng)用,為后續(xù)學(xué)習(xí)打好基礎(chǔ)。其次,為了能讓不同的學(xué)生在數(shù)學(xué)領(lǐng)域得到不同的發(fā)展,我又安排了一道有一定難度的問(wèn)題供學(xué)有余力的同學(xué)選做。
六、教學(xué)評(píng)價(jià)設(shè)計(jì)
評(píng)價(jià)方式的轉(zhuǎn)變是新課程改革的一大亮點(diǎn),課標(biāo)指出:相對(duì)于結(jié)果,過(guò)程更能反映每個(gè)學(xué)生的發(fā)展變化,體現(xiàn)出學(xué)生成長(zhǎng)的歷程。因此,數(shù)學(xué)學(xué)習(xí)的評(píng)價(jià)既要重視結(jié)果,也要重視過(guò)程。結(jié)合“課標(biāo)”對(duì)數(shù)學(xué)學(xué)習(xí)的評(píng)價(jià)建議,對(duì)本節(jié)課的教學(xué)我主要通過(guò)以下幾種方式進(jìn)行:
1、 通過(guò)與學(xué)生的問(wèn)答交流,發(fā)現(xiàn)其思維過(guò)程,在鼓勵(lì)的基礎(chǔ)上,糾正偏差,并對(duì)其進(jìn)行定
性的評(píng)價(jià)。
2、在學(xué)生討論、交流、協(xié)作時(shí),教師通過(guò)觀察,就個(gè)別或整體參與活動(dòng)的態(tài)度和表現(xiàn)做出評(píng)價(jià),以此來(lái)調(diào)動(dòng)學(xué)生參與活動(dòng)的積極性。
3、 通過(guò)練習(xí)來(lái)檢驗(yàn)學(xué)生學(xué)習(xí)的效果,并在講評(píng)中,肯定優(yōu)點(diǎn),指出不足。
4、 通過(guò)作業(yè),反饋信息,再次對(duì)本節(jié)課做出評(píng)價(jià),以便查漏補(bǔ)缺。
高中數(shù)學(xué)說(shuō)課稿 篇3
一、教學(xué)目標(biāo)
1.掌握任意角的正弦、余弦、正切函數(shù)的定義(包括定義域、正負(fù)符號(hào)判斷);了解任意角的余切、正割、余割函數(shù)的定義.
2.經(jīng)歷從銳角三角函數(shù)定義過(guò)度到任意角三角函數(shù)定義的推廣過(guò)程,體驗(yàn)三角函數(shù)概念的產(chǎn)生、發(fā)展過(guò)程.領(lǐng)悟直角坐標(biāo)系的工具功能,豐富數(shù)形結(jié)合的經(jīng)驗(yàn).
3.培養(yǎng)學(xué)生通過(guò)現(xiàn)象看本質(zhì)的唯物主義認(rèn)識(shí)論觀點(diǎn),滲透事物相互聯(lián)系、相互轉(zhuǎn)化的辯證唯物主義世界觀.
4.培養(yǎng)學(xué)生求真務(wù)實(shí)、實(shí)事求是的科學(xué)態(tài)度.
二、重點(diǎn)、難點(diǎn)、關(guān)鍵
重點(diǎn):任意角的正弦、余弦、正切函數(shù)的定義、定義域、(正負(fù))符號(hào)判斷法.
難點(diǎn):把三角函數(shù)理解為以實(shí)數(shù)為自變量的函數(shù).
關(guān)鍵:如何想到建立直角坐標(biāo)系;六個(gè)比值的確定性(α確定,比值也隨之確定)與依賴性(比值隨著α的變化而變化).
三、教學(xué)理念和方法
教學(xué)中注意用新課程理念處理傳統(tǒng)教材,學(xué)生的數(shù)學(xué)學(xué)習(xí)活動(dòng)不僅要接受、記憶、模仿和練習(xí),而且要自主探索、動(dòng)手實(shí)踐、合作交流、閱讀自學(xué),師生互動(dòng),教師發(fā)揮組織者、引導(dǎo)者、合作者的作用,引導(dǎo)學(xué)生主體參與、揭示本質(zhì)、經(jīng)歷過(guò)程.
根據(jù)本節(jié)課內(nèi)容、高一學(xué)生認(rèn)知特點(diǎn)和我自己的教學(xué)風(fēng)格,本節(jié)課采用"啟發(fā)探索、講練結(jié)合"的方法組織教學(xué).
四、教學(xué)過(guò)程
[執(zhí)教線索:
回想再認(rèn):函數(shù)的概念、銳角三角函數(shù)定義(銳角三角形邊角關(guān)系)--問(wèn)題情境:能推廣到任意角嗎?--它山之石:建立直角坐標(biāo)系(為何?)--優(yōu)化認(rèn)知:用直角坐標(biāo)系研究銳角三角函數(shù)--探索發(fā)展:對(duì)任意角研究六個(gè)比值(與角之間的關(guān)系:確定性、依賴性,滿足函數(shù)定義嗎?)--自主定義:任意角三角函數(shù)定義--登高望遠(yuǎn):三角函數(shù)的要素分析(對(duì)應(yīng)法則、定義域、值域與正負(fù)符號(hào)判定)--例題與練習(xí)--回顧小結(jié)--布置作業(yè)]
(一)復(fù)習(xí)引入、回想再認(rèn)
開(kāi)門見(jiàn)山,面對(duì)全體學(xué)生提問(wèn):
在初中我們初步學(xué)習(xí)了銳角三角函數(shù),前幾節(jié)課,我們把銳角推廣到了任意角,學(xué)習(xí)了角度制和弧度制,這節(jié)課該研究什么呢?
探索任意角的三角函數(shù)(板書(shū)課題),請(qǐng)同學(xué)們回想,再明確一下:
。ㄇ榫1)什么叫函數(shù)?或者說(shuō)函數(shù)是怎樣定義的?
讓學(xué)生回想后再點(diǎn)名回答,投影顯示規(guī)范的.定義,教師根據(jù)回答情況進(jìn)行修正、強(qiáng)調(diào):
傳統(tǒng)定義:設(shè)在一個(gè)變化過(guò)程中有兩個(gè)變量x與y,如果對(duì)于x的每一個(gè)值,y都有唯一確定的值和它對(duì)應(yīng),那么就說(shuō)y是x的函數(shù),x叫做自變量,自變量x的取值范圍叫做函數(shù)的定義域.
現(xiàn)代定義:設(shè)A、B是非空的數(shù)集,如果按某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù),在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱映射?:A→B為從集合A到集合B的一個(gè)函數(shù),記作:y=f(x),x∈A,其中x叫自變量,自變量x的取值范圍A叫做函數(shù)的定義域.
設(shè)計(jì)意圖:
函數(shù)和三角函數(shù)是一般和特殊的關(guān)系,是共性和個(gè)性的關(guān)系,學(xué)生已經(jīng)學(xué)習(xí)了函數(shù)的概念,因此對(duì)三角函數(shù)的學(xué)習(xí)就是一個(gè)從一般到特殊的演繹的過(guò)程,也是以具體函數(shù)豐富函數(shù)概念的過(guò)程.教學(xué)經(jīng)驗(yàn)表明:學(xué)生對(duì)函數(shù)兩種定義的記憶是有一定困難的,容易遺忘,此處讓學(xué)生對(duì)函數(shù)概念進(jìn)行回想再認(rèn),目的在于明確函數(shù)概念的本質(zhì),為演繹學(xué)習(xí)任意角三角函數(shù)概念作好知識(shí)和認(rèn)知準(zhǔn)備.
。ㄇ榫2)我們?cè)诔踔型ㄟ^(guò)銳角三角形的邊角關(guān)系,學(xué)習(xí)了銳角的正弦、余弦、正切等三個(gè)三角函數(shù).請(qǐng)回想:這三個(gè)三角函數(shù)分別是怎樣規(guī)定的?
學(xué)生口述后再投影展示,教師再根據(jù)投影進(jìn)行強(qiáng)調(diào):
設(shè)計(jì)意圖:
學(xué)生在初中學(xué)習(xí)了銳角的三角函數(shù)概念,現(xiàn)在學(xué)習(xí)任意角的三角函數(shù),又是一種推廣和拓展的過(guò)程(類似于從有理數(shù)到實(shí)數(shù)的擴(kuò)展).溫故知新,要讓學(xué)生體會(huì)知識(shí)的產(chǎn)生、發(fā)展過(guò)程,就要從源頭上開(kāi)始,從學(xué)生現(xiàn)有認(rèn)知狀況開(kāi)始,對(duì)銳角三角函數(shù)的復(fù)習(xí)就必不可少.
。ǘ┮熹亯|、創(chuàng)設(shè)情景
。ㄇ榫3)我們已經(jīng)把銳角推廣到了任意角,銳角的三角函數(shù)概念也能推廣到任意角嗎?試試看,可以獨(dú)立思考和探索,也可以互相討論!
留時(shí)間讓學(xué)生獨(dú)立思考或自由討論,教師參與討論或巡回對(duì)學(xué)困生作啟發(fā)引導(dǎo).
能推廣嗎?怎樣推廣?針對(duì)剛才的問(wèn)題點(diǎn)名讓學(xué)生回答.用角的對(duì)邊、臨邊、斜邊比值的說(shuō)法顯然是受到阻礙了,由于4.1節(jié)已經(jīng)以直角坐標(biāo)系為工具來(lái)研究任意角了,學(xué)生一般會(huì)想到(否則教師進(jìn)行提示)繼續(xù)用直角坐標(biāo)系來(lái)研究任意角的三角函數(shù).
設(shè)計(jì)意圖:
從學(xué)生現(xiàn)有知識(shí)水平和認(rèn)知能力出發(fā),創(chuàng)設(shè)問(wèn)題情景,讓學(xué)生產(chǎn)生認(rèn)知沖突,進(jìn)行必要的啟發(fā),將學(xué)生思維引上自主探索、合作交流的"再創(chuàng)造"征程.
教師對(duì)學(xué)生回答情況進(jìn)行點(diǎn)評(píng)后布置任務(wù)情景:請(qǐng)同學(xué)們用直角坐標(biāo)系重新研究銳角三角函數(shù)定義!
師生共做(學(xué)生口述,教師板書(shū)圖形和比值):
把銳角α安裝(如何安裝?角的頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸非負(fù)半軸重合)在直角坐標(biāo)系中,在角α終邊上任取一點(diǎn)P,作Pm⊥x軸于m,構(gòu)造一個(gè)RtΔomP,則∠moP=α(銳角),設(shè)P(x,y)(x>0、y>0),α的臨邊om=x、對(duì)邊mP=y,斜邊長(zhǎng)|oP∣=r.
根據(jù)銳角三角函數(shù)定義用x、y、r列出銳角α的正弦、余弦、正切三個(gè)比值,并補(bǔ)充對(duì)應(yīng)列出三個(gè)倒數(shù)比值:
設(shè)計(jì)意圖:
此處做法簡(jiǎn)單,思想重要.為了順利實(shí)現(xiàn)推廣,可以構(gòu)建中間橋梁或公共載體,使之既與初中的定義一致,又能自然地遷移到任意角的情形.由于前一節(jié)已經(jīng)以直角坐標(biāo)系為工具來(lái)研究任意角了,學(xué)生自然能想到仍然以直角坐標(biāo)系為工具來(lái)研究任意角的三角函數(shù).初中以直角三角形邊角關(guān)系來(lái)定義銳角三角函數(shù),現(xiàn)在要用坐標(biāo)系來(lái)研究,探索的結(jié)論既要滿足任意角的情形,又要包容初中銳角三角函數(shù)定義.這是一個(gè)認(rèn)識(shí)的飛躍,是理解任意角三角函數(shù)概念的關(guān)鍵之一,也是數(shù)學(xué)發(fā)現(xiàn)的重要思想和方法,屬于策略性知識(shí),能夠形成遷移能力,為學(xué)生在以后學(xué)習(xí)中對(duì)某些知識(shí)進(jìn)行推廣拓展奠定了基礎(chǔ)(譬如從平面向量到空間向量的擴(kuò)展,從實(shí)數(shù)到復(fù)數(shù)的擴(kuò)展等).
。ㄇ榫4)各個(gè)比值與角之間有怎樣的關(guān)系?比值是角的函數(shù)嗎?
追問(wèn):銳角α大小發(fā)生變化時(shí),比值會(huì)改變嗎?
先讓學(xué)生想象思考,作出主觀判斷,再用幾何畫(huà)板動(dòng)畫(huà)演示,同時(shí)作好解釋說(shuō)明:保持r不變,讓P繞原點(diǎn)o旋轉(zhuǎn)即α在銳角范圍內(nèi)變化,六個(gè)比值隨之變化的直觀形象。結(jié)論是:比值隨α的變化而變化.
引導(dǎo)學(xué)生觀察圖3,聯(lián)系相似三角形知識(shí),
探索發(fā)現(xiàn):
對(duì)于銳角α的每一個(gè)確定值,六個(gè)比值都是
確定的,不會(huì)隨P在終邊上的移動(dòng)而變化.
得出結(jié)論(強(qiáng)調(diào)):當(dāng)α為銳角時(shí),六個(gè)比值隨α的變化而變化;但對(duì)于銳角α的每一個(gè)確定值,六個(gè)比值都是確定的,不會(huì)隨P在終邊上的移動(dòng)而變化.所以,六個(gè)比值分別是以角α為自變量、以比值為函數(shù)值的函數(shù).
設(shè)計(jì)意圖:
初中學(xué)生對(duì)函數(shù)理解較膚淺,這里在學(xué)生思維的最近發(fā)展區(qū)進(jìn)一步研究初中學(xué)過(guò)的銳角三角函數(shù),在思維上更上了一個(gè)層次,扣準(zhǔn)函數(shù)概念的內(nèi)涵,突出變量之間的依賴關(guān)系或?qū)?yīng)關(guān)系,是從函數(shù)知識(shí)演繹到三角函數(shù)知識(shí)的主要依據(jù),是準(zhǔn)確理解三角函數(shù)概念的關(guān)鍵,也是在認(rèn)知上把三角函數(shù)知識(shí)納入函數(shù)知識(shí)結(jié)構(gòu)的關(guān)鍵.這樣做能夠使學(xué)生有效地增強(qiáng)函數(shù)觀念.
。ㄈ┓治鰵w納、自主定義
。ㄇ榫5)能將銳角的比值情形推廣到任意角α嗎?
水到渠成,師生共同進(jìn)行探索和推廣:
對(duì)于一個(gè)任意角α,它的終邊所在位置包括下列兩類共八種情形(投影展示并作分析):
終邊分別在四個(gè)象限的情形:終邊分別在四個(gè)半軸上的情形:
。
。ㄖ赋觯翰划(huà)出角的方向,表明角具有任意性)
怎樣刻畫(huà)任意角的三角函數(shù)呢?研究它的六個(gè)比值:
。ò鍟(shū))設(shè)α是一個(gè)任意角,在α終邊上除原點(diǎn)外任意取一點(diǎn)P(x,y),P與原點(diǎn)o之間的距離記作r(r=>0),列出六個(gè)比值:
α=kππ/2時(shí),x=0,比值y/x、r/x無(wú)意義;
α=kπ時(shí),y=0,比值x/y、r/y無(wú)意義.
追問(wèn):α大小發(fā)生變化時(shí),比值會(huì)改變嗎?
先讓學(xué)生想象思考,作出主觀判斷,再用幾何畫(huà)板動(dòng)畫(huà)演示,同時(shí)作好解釋說(shuō)明:使r保持不變,P繞原點(diǎn)o逆時(shí)針、順時(shí)針旋轉(zhuǎn)即角α變化,六個(gè)比值隨之改變的直觀形象。結(jié)論是:各比值隨α的變化而變化.
再引導(dǎo)學(xué)生利用相似三角形知識(shí),探索發(fā)現(xiàn):對(duì)于任意角α的每一個(gè)確定值,六個(gè)比值都是確定的,不會(huì)隨P在終邊上的移動(dòng)而變化.
綜上得到(強(qiáng)調(diào)):當(dāng)角α變化時(shí),六個(gè)比值隨之變化;對(duì)于確定的角α,六個(gè)比值(如果存在的話)都不會(huì)隨P在角α終邊上的改變而改變,六個(gè)比值是確定的(對(duì)應(yīng)的多值性即誘導(dǎo)公式一留到下節(jié)課分析).
因此,六個(gè)比值分別是以角α為自變量、以比值為函數(shù)值的函數(shù).
根據(jù)歷史上的規(guī)定,對(duì)比值進(jìn)行命名,指出英文記法和讀法,記作(承前作復(fù)合板書(shū)):
=sinα(正弦)=cosα(余弦)=tanα(正切)
=cscα(余割)=sec(正弦)=cotα(余切)
教師強(qiáng)調(diào):sinα表示sin與α的乘積嗎?不是,sinα是函數(shù)記號(hào),是一個(gè)整體,相當(dāng)于函數(shù)記號(hào)f(x).其它幾個(gè)三角函數(shù)也如此
投影顯示圖六,指導(dǎo)學(xué)生分析其對(duì)應(yīng)關(guān)系,進(jìn)一步體會(huì)其函數(shù)內(nèi)涵:
。▓D六)
指導(dǎo)學(xué)生識(shí)記六個(gè)比值及函數(shù)名稱.
教師指出:正弦、余弦、正切、余切、正割、余割六個(gè)函數(shù)統(tǒng)稱為三角函數(shù),三角函數(shù)有非常豐富的知識(shí)和思想方法,我們以后主要學(xué)習(xí)正弦、余弦、正切三個(gè)函數(shù)的相關(guān)知識(shí)和方法,對(duì)于余切、正割、余割,只要同學(xué)們了解它們的定義就夠了(遵循大綱要求).
引導(dǎo)學(xué)生進(jìn)一步分析理解:
已知角的集合與實(shí)數(shù)集之間可以建立一一對(duì)應(yīng)關(guān)系,對(duì)于每一個(gè)確定的實(shí)數(shù),把它看成一個(gè)弧度數(shù),就對(duì)應(yīng)著唯一的一個(gè)角,從而分別對(duì)應(yīng)著六個(gè)唯一的三角函數(shù)值.因此,(板書(shū))三角函數(shù)可以看成是以實(shí)數(shù)為自變量的函數(shù),這將為以后的應(yīng)用帶來(lái)很多方便.
設(shè)計(jì)意圖:
把角的終邊分別在四個(gè)象限、四條半軸上的情形全作出來(lái),有利于對(duì)任意性的全面把握.明確比值存在與否的條件,為確定函數(shù)定義域作準(zhǔn)備.動(dòng)畫(huà)演示比值與角之間的依賴性與確定性關(guān)系,深化理解三角函數(shù)內(nèi)涵.引導(dǎo)學(xué)生在理解的基礎(chǔ)上自主地對(duì)三角函數(shù)作出明確定義,是本節(jié)課的中心任務(wù).由于學(xué)生剛學(xué)弧度制,對(duì)弧度制的理解有待于在以后的學(xué)習(xí)應(yīng)用中逐步感悟,因此部分學(xué)生對(duì)"三角函數(shù)可以看成是以實(shí)數(shù)為自變量的函數(shù)"的理解有半信半疑之感,有待通過(guò)后續(xù)的應(yīng)用加深理解.
。ㄋ模┨剿鞫x域
。ㄇ榫6)(1)函數(shù)概念的三要素是什么?
函數(shù)三要素:對(duì)應(yīng)法則、定義域、值域.
正弦函數(shù)sinα的對(duì)應(yīng)法則是什么?
正弦函數(shù)sinα的對(duì)應(yīng)法則,實(shí)質(zhì)上就是sinα的定義:對(duì)α的每一個(gè)確定的值,有唯一確定的比值y/r與之對(duì)應(yīng),即α→y/r=sinα.
(2)布置任務(wù)情景:什么是三角函數(shù)的定義域?請(qǐng)求出六個(gè)三角函數(shù)的定義域,填寫(xiě)下表:
三角函數(shù)
sinα
cosα
tanα
cotα
cscα
secα
定義域
引導(dǎo)學(xué)生自主探索:
如果沒(méi)有特別說(shuō)明,那么使解析式有意義的自變量的取值范圍叫做函數(shù)的定義域,三角函數(shù)的定義域自然是指:使比值有意義的角α的取值范圍.
關(guān)于sinα=y/r、cosα=x/r,對(duì)于任意角α(弧度數(shù)),r>0,y/r、x/r恒有意義,定義域都是實(shí)數(shù)集R.
對(duì)于tanα=y/x,α=kππ/2時(shí)x=0,y/x無(wú)意義,tanα的定義域是:{α|α∈R,且α≠kππ/2}..........
教師指出:sinα、cosα、tanα的定義域必須緊扣三角函數(shù)定義在理解的基礎(chǔ)上記熟,cotα、cscα、secα的定義域不要求記憶.
(關(guān)于值域,到后面再學(xué)習(xí)).
設(shè)計(jì)意圖:
定義域是函數(shù)三要素之一,研究函數(shù)必須明確定義域.指導(dǎo)學(xué)生根據(jù)定義自主探索確定三角函數(shù)定義域,有利于在理解的基礎(chǔ)上記住它、應(yīng)用它,也增進(jìn)對(duì)三角函數(shù)概念的掌握.
。ㄎ澹┓(hào)判斷、形象識(shí)記
。ㄇ榫7)能判斷三角函數(shù)值的正、負(fù)嗎?試試看!
引導(dǎo)學(xué)生緊緊抓住三角函數(shù)定義來(lái)分析,r>0,三角函數(shù)值的符號(hào)決定于x、y值的正負(fù),根據(jù)終邊所在位置總結(jié)出形象的識(shí)記口訣:
。ㄍ玫谜、異號(hào)得負(fù))
sinα=y/r:上正下負(fù)橫為0cosα=x/r:左負(fù)右正縱為0tanα=y/x:交叉正負(fù)
設(shè)計(jì)意圖:
判斷三角函數(shù)值的正負(fù)符號(hào),是本章教材的一項(xiàng)重要的知識(shí)、技能要求.要引導(dǎo)學(xué)生抓住定義、數(shù)形結(jié)合判斷和記憶三角函數(shù)值的正負(fù)符號(hào),并總結(jié)出形象的識(shí)記口訣,這也是理解和記憶的關(guān)鍵.
(六)練習(xí)鞏固、理解記憶
1、自學(xué)例1:已知角α的終邊經(jīng)過(guò)點(diǎn)P(2,-3),求α的六個(gè)三角函數(shù)值.
要求:讀完題目,思考:計(jì)算什么?需要準(zhǔn)備什么?閉目心算,對(duì)照解答,模仿書(shū)面表達(dá)格式,鞏固定義.
課堂練習(xí):
p19題1:已知角α的終邊經(jīng)過(guò)點(diǎn)P(-3,-1),求α的六個(gè)三角函數(shù)值.
要求心算,并提問(wèn)中下學(xué)生檢驗(yàn),--------
點(diǎn)評(píng):角α終邊上有無(wú)窮多個(gè)點(diǎn),根據(jù)三角函數(shù)的定義,只要知道α終邊上任意一個(gè)點(diǎn)的坐標(biāo),就可以計(jì)算這個(gè)角的三角函數(shù)值(或判斷其無(wú)意義).
補(bǔ)充例題:已知角α的終邊經(jīng)過(guò)點(diǎn)P(x,-3),cosα=4/5,求α的其它五個(gè)三角函數(shù)值.
師生探索:已知y=-3,要求其它五個(gè)三角函數(shù)值,須知r=?,x=?.根據(jù)定義得=(方程思想),x>0,解得x=4,從而--------.解答略.
2、自學(xué)例2:求下列各角的六個(gè)三角函數(shù)值:(1)0;(2)π/2;(3)3π/2.
提問(wèn),據(jù)反饋信息作點(diǎn)評(píng)、修正.
師生探索:緊扣三角函數(shù)定義求解,首先要在終邊上取定一點(diǎn)。終邊在哪兒呢?取定哪一點(diǎn)呢?任意點(diǎn)、還是特殊點(diǎn)?要靈活,只要能夠算出三角函數(shù)值,都可以。
取特殊點(diǎn)能使計(jì)算更簡(jiǎn)明。課堂練習(xí):p19題2.(改編)填表:
角α(角度)
0°
90°
180°
270°
360°
角α(弧度)
sinα
cosα
tanα
處理:要求取點(diǎn)用定義求解,針對(duì)計(jì)算過(guò)程提問(wèn)、點(diǎn)評(píng),理解鞏固定義.
強(qiáng)調(diào):終邊在坐標(biāo)軸上的角叫軸線角,如0、π/2、π、3π/2等,今后經(jīng)常用到軸線角的三角函數(shù)值,要結(jié)合三角函數(shù)定義記熟這些值.
設(shè)計(jì)意圖:
及時(shí)安排自學(xué)例題、自做教材練習(xí)題,一般性與特殊性相結(jié)合,進(jìn)行適量的變式練習(xí),以鞏固和加深對(duì)三角函數(shù)概念的理解,通過(guò)課堂積極主動(dòng)的練習(xí)活動(dòng)進(jìn)行思維訓(xùn)練,把"培養(yǎng)學(xué)生分析解決問(wèn)題的能力"貫穿在每一節(jié)課的課堂教學(xué)始終.
。ㄆ撸┗仡櫺〗Y(jié)、建構(gòu)網(wǎng)絡(luò)
要求全體學(xué)生根據(jù)教師所提問(wèn)題進(jìn)行總結(jié)識(shí)記,提問(wèn)檢查并強(qiáng)調(diào):
1.你是怎樣把銳角三角函數(shù)定義推廣到任意角的?或者說(shuō)任意角三角函數(shù)具體是怎樣定義的?(建立直角坐標(biāo)系,使角的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,---,在終邊上任意取定一點(diǎn)P,---)
2.你如何判斷和記憶正弦、余弦、正切函數(shù)的定義域?(根據(jù)定義,------)
3.你如何記憶正弦、余弦、正切函數(shù)值的符號(hào)?(根據(jù)定義,想象坐標(biāo)位置,-----)
設(shè)計(jì)意圖:
遺忘的規(guī)律是先快后慢,回顧再現(xiàn)是記憶的重要途徑,在課堂內(nèi)及時(shí)總結(jié)識(shí)記主要內(nèi)容是上策.此處以問(wèn)題形式讓學(xué)生自己歸納識(shí)記本節(jié)課的主體內(nèi)容,抓住要害,人人參與,及時(shí)建構(gòu)知識(shí)網(wǎng)絡(luò),優(yōu)化知識(shí)結(jié)構(gòu),培養(yǎng)認(rèn)知能力.
。ò耍┎贾谜n外作業(yè)
1.書(shū)面作業(yè):習(xí)題4.3第3、4、5題.
2.認(rèn)真閱讀p22"閱讀材料:三角函數(shù)與歐拉",了解歐拉的生平和貢獻(xiàn),特別學(xué)習(xí)他對(duì)科學(xué)的摯著精神和堅(jiān)忍不拔的頑強(qiáng)毅力!有興趣的同學(xué)可以上網(wǎng)查閱歐拉的相關(guān)情況.
教學(xué)設(shè)計(jì)說(shuō)明
一、對(duì)本節(jié)教材的理解
三角函數(shù)是描述周期運(yùn)動(dòng)現(xiàn)象的重要的數(shù)學(xué)模型,有非常廣泛的應(yīng)用.
星星之火,可以燎原.
直角三角形簡(jiǎn)單樸素的邊角關(guān)系,以直角坐標(biāo)系為工具進(jìn)行自然地推廣而得到簡(jiǎn)明的任意角的三角函數(shù)定義,緊緊扣住三角函數(shù)定義這個(gè)寶貴的源泉,自然地導(dǎo)出三角函數(shù)線、定義域、符號(hào)判斷、值域、同角三角函數(shù)關(guān)系、多組誘導(dǎo)公式、多組變換公式、輔助角公式、圖象和性質(zhì),本章教材就是這些內(nèi)容的具體安排.定義直接用于解析幾何(如直線斜率公式、極坐標(biāo)、部分曲線的參數(shù)方程等),定義還是直接解決某些問(wèn)題的工具,三角函數(shù)知識(shí)是物理學(xué)、高等數(shù)學(xué)、測(cè)量學(xué)、天文學(xué)的重要基礎(chǔ).
三角函數(shù)定義必然是學(xué)好全章內(nèi)容的關(guān)鍵,如果學(xué)生掌握不好,將直接影響到后續(xù)內(nèi)容的學(xué)習(xí),由三角函數(shù)定義的基礎(chǔ)性和應(yīng)用的廣泛性決定了本節(jié)教材的重點(diǎn)就是定義本身.
二、教學(xué)法加工
數(shù)學(xué)教材通常用抽象概括的形式化的數(shù)學(xué)書(shū)面語(yǔ)言闡述其知識(shí)和方法,教師只有通過(guò)教學(xué)法加工,始終貫徹"以學(xué)生的發(fā)展為本"的科學(xué)教育觀,"將數(shù)學(xué)的學(xué)術(shù)形態(tài)轉(zhuǎn)化為教育形態(tài)"(張奠宙語(yǔ)),引導(dǎo)學(xué)生積極主動(dòng)地進(jìn)行思考活動(dòng),直接參與體驗(yàn)數(shù)學(xué)知識(shí)產(chǎn)生發(fā)展的背景、過(guò)程,返璞歸真,揭示本質(zhì),體會(huì)其中的思想和方法,學(xué)生只有這樣才能真正理解掌握數(shù)學(xué)知識(shí)和方法,有效地發(fā)展智力、培養(yǎng)能力.
在本節(jié)教材中,三角函數(shù)定義是重點(diǎn),三角函數(shù)線是難點(diǎn),為了較好地突出重點(diǎn)和突破難點(diǎn),分散重點(diǎn)和難點(diǎn),同時(shí)兼顧例題、課堂練習(xí)的協(xié)調(diào)匹配,將不按教材順序來(lái)進(jìn)行教學(xué),第一課時(shí)安排三角函數(shù)的定義(突出重點(diǎn))、定義域、符號(hào)判斷、例題1、2及p19課堂練習(xí)1、2、3,第二課時(shí)安排三角函數(shù)線、p15練習(xí)(突破難點(diǎn))、誘導(dǎo)公式一及課本例題3、4和其它練習(xí).本課例屬第一課時(shí).
教學(xué)經(jīng)驗(yàn)表明,三角函數(shù)定義"簡(jiǎn)單易記",學(xué)生很容易輕視它,不少學(xué)生機(jī)械記憶、一知半解.本課例堅(jiān)持"教師主導(dǎo)、學(xué)生主體"的原則,采用"啟發(fā)探索、講練結(jié)合"的常規(guī)教學(xué)方法,在學(xué)生的最近發(fā)展區(qū)圍繞學(xué)生的學(xué)習(xí)目標(biāo)設(shè)計(jì)了一系列符合學(xué)生認(rèn)知規(guī)律的程序,通過(guò)多媒體輔助教學(xué)動(dòng)畫(huà)演示比值與角之間的依賴關(guān)系,拓展思維活動(dòng)時(shí)空,力求使學(xué)生全員主動(dòng)參與,積極思考,體會(huì)定義產(chǎn)生、發(fā)展的過(guò)程,通過(guò)思維過(guò)程來(lái)理解知識(shí)、培養(yǎng)能力.
將六個(gè)比值放在一起來(lái)研究,同時(shí)給出六個(gè)三角函數(shù)的定義,能夠增強(qiáng)對(duì)比感和整體感,至于大綱對(duì)兩組函數(shù)掌握與了解的不同要求,在下一步的教學(xué)中注意區(qū)分就行了.
教學(xué)中關(guān)于符號(hào)sinα、cosα、tanα的出場(chǎng)安排,教材首先對(duì)比值取名并給出英文記法,再研究它們與α的函數(shù)關(guān)系;另外可以先研究六個(gè)比值與α之間的函數(shù)關(guān)系,然后再對(duì)六個(gè)比值取名給出記法.后者更能突出函數(shù)內(nèi)涵,揭示三角函數(shù)本質(zhì).本課例采用后者組織教學(xué).
三、教學(xué)過(guò)程分析(見(jiàn)穿插在教案中的設(shè)計(jì)意圖).
高中數(shù)學(xué)說(shuō)課稿 篇4
一、教材分析
1.教材所處的地位和作用
本節(jié)課所學(xué)內(nèi)容為算法案例3,主要學(xué)習(xí)如何給一組數(shù)據(jù)排序,學(xué)習(xí)作程序框圖和設(shè)計(jì)程序,通過(guò)本節(jié)課的學(xué)習(xí)之后將能使許多復(fù)雜的問(wèn)題在計(jì)算機(jī)上得到解決,減少工作量。
2 教學(xué)的重點(diǎn)和難點(diǎn)
重點(diǎn):兩種排序法的排序步驟及計(jì)算機(jī)程序設(shè)計(jì)
難點(diǎn):排序法的計(jì)算機(jī)程序設(shè)計(jì)
二、教學(xué)目標(biāo)分析
1.知識(shí)與技能目標(biāo):
掌握數(shù)據(jù)排序的原理能使用直接排序法與冒泡排序法給一組數(shù)據(jù)排序,進(jìn)而能設(shè)計(jì)冒泡排序法的程序框圖及程序,理解數(shù)學(xué)算法與計(jì)算機(jī)算法的區(qū)別,理解計(jì)算機(jī)對(duì)數(shù)學(xué)的輔助作用。
2.過(guò)程與方法目標(biāo):
能根據(jù)排序法中的直接插入排序法與冒泡排序法的步驟,了解數(shù)學(xué)計(jì)算轉(zhuǎn)換為計(jì)算機(jī)計(jì)算的途徑,從而探究計(jì)算機(jī)算法與數(shù)學(xué)算法的區(qū)別,體會(huì)計(jì)算機(jī)對(duì)數(shù)學(xué)學(xué)習(xí)的輔助作用。
3.情感,態(tài)度和價(jià)值觀目標(biāo)
通過(guò)對(duì)排序法的學(xué)習(xí),領(lǐng)會(huì)數(shù)學(xué)計(jì)算與計(jì)算機(jī)計(jì)算的區(qū)別,充分認(rèn)識(shí)信息技術(shù)對(duì)數(shù)學(xué)的促進(jìn)。
三、教學(xué)方法與手段分析
1.教學(xué)方法:充分發(fā)揮學(xué)生的主體作用和教師的主導(dǎo)作用,采用啟發(fā)式,并遵循循序漸進(jìn)的教學(xué)原則。這有利于學(xué)生掌握從現(xiàn)象到本質(zhì),從已知到未知逐步形成概念的學(xué)習(xí)方法,有利于發(fā)展學(xué)生抽象思維能力和邏輯推理能力。
2.教學(xué)手段:通過(guò)各種教學(xué)媒體(計(jì)算機(jī))調(diào)動(dòng)學(xué)生參與課堂教學(xué)的主動(dòng)性與積極性。
四、學(xué)法分析
模仿排序法中數(shù)字排序的步驟,理解計(jì)算機(jī)計(jì)算的一般步驟,領(lǐng)會(huì)數(shù)學(xué)計(jì)算在計(jì)算機(jī)上實(shí)施的要求。
五、教學(xué)過(guò)程分析
一、創(chuàng)設(shè)情境
提出問(wèn)題:大家考完試后如果要排一下成績(jī)的話,單靠人手該怎樣操作呢?如果我們用計(jì)算機(jī)里的軟件電子表格對(duì)分?jǐn)?shù)排序就非常簡(jiǎn)單,那么電子計(jì)算機(jī)是怎么對(duì)數(shù)據(jù)進(jìn)行排序的呢?
通過(guò)這個(gè)問(wèn)題,引出我們這節(jié)課所要學(xué)習(xí)的兩種排序方法--直接插入排序法與冒泡排序法
二、探索新知
這里我先讓學(xué)生們閱讀課本P30-P31的內(nèi)容,然后回答下面的問(wèn)題:
(1)排序法中的直接插入排序法與冒泡排序法的步驟有什么區(qū)別?
(2)冒泡法排序中對(duì)5個(gè)數(shù)字進(jìn)行排序最多需要多少趟?
(3)在冒泡法排序?qū)?個(gè)數(shù)字進(jìn)行排序的每一趟中需要比較大小幾次?
提出問(wèn)題,然后讓學(xué)生們作出回答,這樣可以促使學(xué)生們能夠積極思考,自主地去學(xué)習(xí)新的知識(shí),而不只是單向的由老師向?qū)W生灌輸。
三、知識(shí)應(yīng)用
例1 用冒泡排序法對(duì)數(shù)據(jù)7,5,3,9,1從小到大進(jìn)行排序
。ǜ鶕(jù)剛剛提問(wèn)所總結(jié)的方法完成解題步驟)
練習(xí):寫(xiě)出用冒泡排序法對(duì)5個(gè)數(shù)據(jù)4,11,7,9,6排序的過(guò)程中每一趟排序的結(jié)果.
。皶r(shí)將學(xué)到的知識(shí)應(yīng)用,有利于知識(shí)的掌握)
例2 設(shè)計(jì)冒泡排序法對(duì)5個(gè)數(shù)據(jù)進(jìn)行排序的程序框圖.
(在之前所學(xué)習(xí)知識(shí)的基礎(chǔ)上畫(huà)出程序框圖,然后給出一個(gè)思考題)
思考:直接插入排序法的程序框圖如何設(shè)計(jì)?可否把上述程序框圖轉(zhuǎn)化為程序?
。ㄖ蟪鲆粋(gè)練習(xí)題,找出思考題的答案)
練習(xí):用直接插入排序法對(duì)例1中的數(shù)據(jù)從小到大排序,畫(huà)出程序框圖,并轉(zhuǎn)化為程序運(yùn)行求出最終答案。
。ㄟ@里可以使學(xué)生們領(lǐng)會(huì)數(shù)學(xué)計(jì)算與計(jì)算機(jī)計(jì)算的區(qū)別,充分認(rèn)識(shí)信息技術(shù)對(duì)數(shù)學(xué)的促進(jìn)。)
四、課堂小結(jié):
(1)數(shù)字排序法中的常見(jiàn)的兩種排序法直接插入排序法與冒泡排序法它們的排序步驟
(2兩種排序法的計(jì)算機(jī)程序設(shè)計(jì)
(3)注意循環(huán)語(yǔ)句的使用與算法的循環(huán)次數(shù),對(duì)算法進(jìn)行改進(jìn)。
通過(guò)小結(jié)使學(xué)生們對(duì)知識(shí)有一個(gè)系統(tǒng)的認(rèn)識(shí),突出重點(diǎn),抓住關(guān)鍵,培養(yǎng)概括能力。
高中數(shù)學(xué)說(shuō)課稿 篇5
尊敬的各位專家、評(píng)委:
下午好!
我的抽簽序號(hào)是____,今天我說(shuō)課的課題是《_______》第__課時(shí)。 我嘗試?yán)眯抡n標(biāo)的理念來(lái)指導(dǎo)教學(xué),對(duì)于本節(jié)課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標(biāo)分析、教法學(xué)法分析、教學(xué)過(guò)程分析和評(píng)價(jià)分析五個(gè)方面來(lái)談?wù)勎覍?duì)教材的理解和教學(xué)的設(shè)計(jì),敬請(qǐng)各位專家、評(píng)委批評(píng)指正。
一、教材分析
。ㄒ唬┑匚慌c作用
數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。一方面數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項(xiàng)公式和遞推公式的基礎(chǔ)上,對(duì)數(shù)列的知識(shí)進(jìn)一步深入和拓廣。同時(shí)等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對(duì)比的依據(jù)。
。ǘ⿲W(xué)情分析
。1)學(xué)生已熟練掌握_________________。
。2)學(xué)生的知識(shí)經(jīng)驗(yàn)較為豐富,具備了教強(qiáng)的抽象思維能力和演繹推理能力。
。3)學(xué)生思維活潑,積極性高,已初步形成對(duì)數(shù)學(xué)問(wèn)題的合作探究能力。
(4) 學(xué)生層次參次不齊,個(gè)體差異比較明顯。
二、目標(biāo)分析
新課標(biāo)指出“三維目標(biāo)”是一個(gè)密切聯(lián)系的有機(jī)整體,應(yīng)該以獲得知識(shí)與技能的過(guò)程,同時(shí)成為學(xué)會(huì)學(xué)習(xí)和正確價(jià)值觀。這要求我們?cè)诮虒W(xué)中以知識(shí)技能的培養(yǎng)為主線,透情感態(tài)度與價(jià)值觀,并把這兩者充分體現(xiàn)在教學(xué)過(guò)程中,新課標(biāo)指出教學(xué)的主體是學(xué)生,因此目標(biāo)的制定和設(shè)計(jì)必須從學(xué)生的角度出發(fā),根據(jù)____在教材內(nèi)容中的地位與作用,結(jié)合學(xué)情分析,本節(jié)課教學(xué)應(yīng)實(shí)現(xiàn)如下教學(xué)目標(biāo):
。ㄒ唬┙虒W(xué)目標(biāo)
。1)知識(shí)與技能
使學(xué)生理解函數(shù)單調(diào)性的概念,初步掌握判別函數(shù)單調(diào)性的方法;。
。2)過(guò)程與方法
引導(dǎo)學(xué)生通過(guò)觀察、歸納、抽象、概括,自主建構(gòu)單調(diào)增函數(shù)、單調(diào)減函數(shù)等概念;能運(yùn)用函數(shù)單調(diào)性概念解決簡(jiǎn)單的問(wèn)題;使學(xué)生領(lǐng)會(huì)數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力。
。3)情感態(tài)度與價(jià)值觀
在函數(shù)單調(diào)性的學(xué)習(xí)過(guò)程中,使學(xué)生體驗(yàn)數(shù)學(xué)的科學(xué)價(jià)值和應(yīng)用價(jià)值,培養(yǎng)學(xué)生善于觀察、勇于探索的良好習(xí)慣和嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。
(二)重點(diǎn)難點(diǎn)
本節(jié)課的教學(xué)重點(diǎn)是________________________,教學(xué)難點(diǎn)是_____________________。
三、教法、學(xué)法分析
(一)教法
基于本節(jié)課的內(nèi)容特點(diǎn)和高二學(xué)生的年齡特征,按照臨沂市高中數(shù)學(xué)“三五四”課堂教學(xué)策略,采用探究――體驗(yàn)教學(xué)法為主來(lái)完成教學(xué),為了實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),在教法上我采取了:
1、通過(guò)學(xué)生熟悉的實(shí)際生活問(wèn)題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實(shí)的距離,激發(fā)學(xué)生求知欲,調(diào)動(dòng)學(xué)生主體參與的積極性.
2、在形成概念的過(guò)程中,緊扣概念中的關(guān)鍵語(yǔ)句,通過(guò)學(xué)生的主體參與,正確地形成概念.
3、在鼓勵(lì)學(xué)生主體參與的同時(shí),不可忽視教師的主導(dǎo)作用,要教會(huì)學(xué)生清晰的思維、嚴(yán)謹(jǐn)?shù)耐评,并順利地完成?shū)面表達(dá).
。ǘ⿲W(xué)法
在學(xué)法上我重視了:
1、讓學(xué)生利用圖形直觀啟迪思維,并通過(guò)正、反例的構(gòu)造,來(lái)完成從感性認(rèn)識(shí)到理性思維的質(zhì)的飛躍。
2、讓學(xué)生從問(wèn)題中質(zhì)疑、嘗試、歸納、總結(jié)、運(yùn)用,培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題、研究問(wèn)題和分析解決問(wèn)題的能力。
四、教學(xué)過(guò)程分析
。ㄒ唬┙虒W(xué)過(guò)程設(shè)計(jì)
教學(xué)是一個(gè)教師的“導(dǎo)”,學(xué)生的“學(xué)”以及教學(xué)過(guò)程中的“悟”構(gòu)成的和諧整體。教師的“導(dǎo)”也就是教師啟發(fā)、誘導(dǎo)、激勵(lì)、評(píng)價(jià)等為學(xué)生的學(xué)習(xí)搭建支架,把學(xué)習(xí)的任務(wù)轉(zhuǎn)移給學(xué)生,學(xué)生就是接受任務(wù),探究問(wèn)題、完成任務(wù)。如果在教學(xué)過(guò)程中把“教與學(xué)”完美的結(jié)合也就是以“問(wèn)題”為核心,通過(guò)對(duì)知識(shí)的發(fā)生、發(fā)展和運(yùn)用過(guò)程的演繹、解釋和探究來(lái)組織和推動(dòng)教學(xué)。
(1)創(chuàng)設(shè)情境,提出問(wèn)題。
新課標(biāo)指出:“應(yīng)該讓學(xué)生在具體生動(dòng)的情境中學(xué)習(xí)數(shù)學(xué)”。在本節(jié)課的教學(xué)中,從我們熟悉的生活情境中提出問(wèn)題,問(wèn)題的設(shè)計(jì)改變了傳統(tǒng)目的明確的設(shè)計(jì)方式,給學(xué)生最大的思考空間,充分體現(xiàn)學(xué)生主體地位。
。2)引導(dǎo)探究,建構(gòu)概念。
數(shù)學(xué)概念的形成來(lái)自解決實(shí)際問(wèn)題和數(shù)學(xué)自身發(fā)展的需要.但概念的高度抽象,造成了難懂、難教和難學(xué),這就需要讓學(xué)生置身于符合自身實(shí)際的學(xué)習(xí)活動(dòng)中去,從自己的經(jīng)驗(yàn)和已有的知識(shí)基礎(chǔ)出發(fā),經(jīng)歷“數(shù)學(xué)化”、“再創(chuàng)造”的活動(dòng)過(guò)程.
。3)自我嘗試,初步應(yīng)用。
有效的數(shù)學(xué)學(xué)習(xí)過(guò)程,不能單純的模仿與記憶,數(shù)學(xué)思想的領(lǐng)悟和學(xué)習(xí)過(guò)程更是如此。讓學(xué)生在解題過(guò)程中親身經(jīng)歷和實(shí)踐體驗(yàn),師生互動(dòng)學(xué)習(xí),生生合作交流,共同探究.
。4)當(dāng)堂訓(xùn)練,鞏固深化。
通過(guò)學(xué)生的主體參與,使學(xué)生深切體會(huì)到本節(jié)課的主要內(nèi)容和思想方法,從而實(shí)現(xiàn)對(duì)知識(shí)識(shí)的再次深化。
(5)小結(jié)歸納,回顧反思。
小結(jié)歸納不僅是對(duì)知識(shí)的簡(jiǎn)單回顧,還要發(fā)揮學(xué)生的主體地位,從知識(shí)、方法、經(jīng)驗(yàn)等方面進(jìn)行總結(jié)。我設(shè)計(jì)了三個(gè)問(wèn)題:(1)通過(guò)本節(jié)課的學(xué)習(xí),你學(xué)到了哪些知識(shí)?(2)通過(guò)本節(jié)課的學(xué)習(xí),你最大的體驗(yàn)是什么?(3)通過(guò)本節(jié)課的學(xué)習(xí),你掌握了哪些技能?
。ǘ┳鳂I(yè)設(shè)計(jì)
作業(yè)分為必做題和選做題,必做題對(duì)本節(jié)課學(xué)生知識(shí)水平的反饋,選做題是對(duì)本
節(jié)課內(nèi)容的延伸與,注重知識(shí)的延伸與連貫,強(qiáng)調(diào)學(xué)以致用。通過(guò)作業(yè)設(shè)置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,促進(jìn)學(xué)生自主發(fā)展、合作探究的學(xué)習(xí)氛圍的形成.
我設(shè)計(jì)了以下作業(yè):
。1)必做題
(2)選做題
。ㄈ┌鍟(shū)設(shè)計(jì)
板書(shū)要基本體現(xiàn)整堂課的內(nèi)容與方法,體現(xiàn)課堂進(jìn)程,能簡(jiǎn)明扼要反映知識(shí)結(jié)構(gòu)及其相互聯(lián)系;能指導(dǎo)教師的教學(xué)進(jìn)程、引導(dǎo)學(xué)生探索知識(shí);通過(guò)使用幻燈片輔助板書(shū),節(jié)省課堂時(shí)間,使課堂進(jìn)程更加連貫。
五、評(píng)價(jià)分析
學(xué)生學(xué)習(xí)的結(jié)果評(píng)價(jià)當(dāng)然重要,但是更重要的是學(xué)生學(xué)習(xí)的過(guò)程評(píng)價(jià)。我采用及時(shí)點(diǎn)評(píng)、延時(shí)點(diǎn)評(píng)與學(xué)生互評(píng)相結(jié)合,全面考查學(xué)生在知識(shí)、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過(guò)程中,評(píng)價(jià)學(xué)生是否有積極的情感態(tài)度和頑強(qiáng)的理性精神,在概念反思過(guò)程中評(píng)價(jià)學(xué)生的歸納猜想能力是否得到發(fā)展,通過(guò)鞏固練習(xí)考查學(xué)生對(duì)____是否有一個(gè)完整的集訓(xùn),并進(jìn)行及時(shí)的調(diào)整和補(bǔ)充。 以上就是我對(duì)本節(jié)課的理解和設(shè)計(jì),敬請(qǐng)各位專家、評(píng)委批評(píng)指正。 謝謝!
高中數(shù)學(xué)說(shuō)課稿 篇6
一、教材分析:
"數(shù)列"是中學(xué)數(shù)學(xué)的重要內(nèi)容之一。不僅在歷年的高考中占有一定的比重,而且在實(shí)際生活中也經(jīng)常要用到數(shù)列的一些知識(shí)。例如:儲(chǔ)蓄、分期付款中的有關(guān)計(jì)算就要用到數(shù)列知識(shí)。
就本節(jié)課而言,在給出數(shù)列的基本概念之后,結(jié)合例題,指出數(shù)列可以看作定義域?yàn)檎麛?shù)集(或它的有限子集)的函數(shù)。因此,本節(jié)課的內(nèi)容,一方面是前面函數(shù)知識(shí)的延伸及應(yīng)用,可以使學(xué)生加深對(duì)函數(shù)概念的理解;另一方面也可以為后面學(xué)習(xí)等差數(shù)列、等比數(shù)列的通項(xiàng)、求和等知識(shí)打下鋪墊。所以本節(jié)課在教材中起到了"承上啟下"的作用,必須講清、講透。
二、教學(xué)目標(biāo):
根據(jù)上面對(duì)教材的分析,并結(jié)合學(xué)生的認(rèn)知水平和思維特點(diǎn),確定本節(jié)課的教學(xué)目標(biāo)。
1、知識(shí)目標(biāo):
。1)形成并掌握數(shù)列及其有關(guān)概念,識(shí)記數(shù)列的表示和分類,了解數(shù)列通項(xiàng)公式的意義。
。2)理解數(shù)列的通項(xiàng)公式,能根據(jù)數(shù)列的通項(xiàng)公式寫(xiě)出數(shù)列的任意一項(xiàng)。對(duì)比較簡(jiǎn)單的數(shù)列,使學(xué)生能根據(jù)數(shù)列的前幾項(xiàng)觀察歸納出數(shù)列的通項(xiàng)公式,并通過(guò)數(shù)列與函數(shù)的比較加深對(duì)數(shù)列的認(rèn)識(shí)。
2、能力目標(biāo):
培養(yǎng)學(xué)生觀察、歸納、類比、聯(lián)想等分析問(wèn)題的能力,同時(shí)加深理解數(shù)學(xué)知識(shí)之間相互滲透性的思想。
3、情感目標(biāo):
通過(guò)滲透函數(shù)、方程思想,培養(yǎng)學(xué)生的思維能力,使學(xué)生在民主、和諧的活動(dòng)中感受學(xué)習(xí)的樂(lè)趣。通過(guò)介紹數(shù)列與函數(shù)間存在的特殊到一般關(guān)系,向?qū)W生進(jìn)行辯證唯物主義思想教育。
三、重點(diǎn)、難點(diǎn):
1、教學(xué)重點(diǎn)
理解數(shù)列的概念及其通項(xiàng)公式,加強(qiáng)與函數(shù)的聯(lián)系,并能根據(jù)通項(xiàng)公式寫(xiě)出數(shù)列中的任意一項(xiàng)。
2、教學(xué)難點(diǎn)
根據(jù)數(shù)列前幾項(xiàng)的特點(diǎn),通過(guò)多角度、多層次的觀察和分析,歸納出數(shù)列的通項(xiàng)公式。
四、教法學(xué)法
本節(jié)課以"問(wèn)題情境——?dú)w納抽象——鞏固訓(xùn)練"的模式展開(kāi),引導(dǎo)學(xué)生從知識(shí)和生活經(jīng)驗(yàn)出發(fā),提出問(wèn)題并與學(xué)生共同探索、討論解決問(wèn)題的方法,讓學(xué)生經(jīng)歷知識(shí)的形成過(guò)程,從而理解更加透徹。
現(xiàn)代教學(xué)觀明確指出:教師是主導(dǎo),學(xué)生是主體,學(xué)生應(yīng)成為學(xué)習(xí)的主人。根據(jù)本節(jié)內(nèi)容及學(xué)生的認(rèn)知規(guī)律,針對(duì)不同內(nèi)容應(yīng)選擇不同的方法。對(duì)于國(guó)際象棋棋盤麥粒采用電腦動(dòng)畫(huà)演示,增強(qiáng)感性認(rèn)識(shí);所舉的引例及數(shù)列的函數(shù)定義,可采用探索發(fā)現(xiàn)法;對(duì)通項(xiàng)公式及數(shù)列的分類等概念采用指導(dǎo)閱讀法;對(duì)于難題(根據(jù)數(shù)列的前幾項(xiàng)寫(xiě)出一個(gè)通項(xiàng)公式)采用講練結(jié)合法。
"授人以魚(yú),不如授人以漁",平時(shí)在教學(xué)中教師應(yīng)不斷指導(dǎo)學(xué)生學(xué)會(huì)學(xué)習(xí)。本節(jié)課從學(xué)生實(shí)際出發(fā),創(chuàng)設(shè)情境,引導(dǎo)學(xué)生觀察、分析,探索發(fā)現(xiàn),歸納總結(jié),培養(yǎng)學(xué)生積極思維的品質(zhì),加強(qiáng)主動(dòng)學(xué)習(xí)的能力。
為了有效地突出重點(diǎn),突破難點(diǎn),增大課堂容量,提高課堂效率,本節(jié)課將常規(guī)教學(xué)手段與現(xiàn)代教學(xué)手段相結(jié)合,將引例、例題、練習(xí)等實(shí)物投影。
五、教學(xué)過(guò)程
1、創(chuàng)設(shè)情景,激發(fā)興趣,引入新課
(1)電腦動(dòng)畫(huà)演示:國(guó)際象棋棋盤格子中放有麥粒的示意圖,從而得到一組數(shù):1,2,22,23……263
敘述故事:給你一張報(bào)紙,你可以用它登上月球,你相信嗎?只要不斷地將報(bào)紙對(duì)折42次以后,報(bào)紙的厚度就可以達(dá)到月球和地球的距離。
設(shè)計(jì)意圖:以實(shí)例引入概念,再配以電腦動(dòng)畫(huà),敘述小故事,增強(qiáng)了感性認(rèn)識(shí),調(diào)動(dòng)學(xué)生學(xué)習(xí)新知識(shí)的積極性。
。2)投影演示,再觀察以下幾列數(shù):
、倌嘲鄬W(xué)生的學(xué)號(hào):1,2,3,4……,50
、趶1984年到20xx年,中國(guó)體育健兒參加奧運(yùn)會(huì)每屆所得的金牌數(shù):
15,5,16,16,28,32
③某次活動(dòng),在1km長(zhǎng)的路段,從起點(diǎn)開(kāi)始,每隔10m放置一個(gè)垃圾筒,由近及遠(yuǎn)各筒與起點(diǎn)的距離排成一列數(shù):0.10.20.30,……1000
、芊派湫晕镔|(zhì)衰變,設(shè)原質(zhì)量為1,則各年的剩留量依次為:1,0.84,0.842,0.843,……
2、歸納抽象,形成概念
。1)學(xué)生嘗試敘述數(shù)列的定義:?jiǎn)l(fā)學(xué)生觀察上述幾組數(shù)據(jù)后,進(jìn)行歸納總結(jié)定義:按一定次序排成的一列數(shù),叫數(shù)列,便于培養(yǎng)學(xué)生的抽象概括能力。
舉例1:1,3,5,7與7,5,3,1 這兩個(gè)數(shù)列有何區(qū)別?
舉例2:-1,1,-1,1,……是不是一個(gè)數(shù)列?
設(shè)計(jì)意圖:使學(xué)生注意把數(shù)列中的數(shù)和集合中的元素區(qū)分開(kāi)來(lái):
、贁(shù)列中的數(shù)是有順序的,而集合中的元素是無(wú)序的。
、跀(shù)列中的數(shù)可以重復(fù)出現(xiàn),而集中的元素不能重復(fù)出現(xiàn)。
進(jìn)一步加深學(xué)生對(duì)數(shù)列定義的理解。
。2)數(shù)列的項(xiàng)及項(xiàng)的表示方法: an
。3)數(shù)列的表示方法:可寫(xiě)成:a1,a2,a3,……,an……
或簡(jiǎn)記為:{an},注意an與{an}的區(qū)別
上述(2)(3)采用指導(dǎo)閱讀法(書(shū)P106頁(yè)第7節(jié)~第8節(jié)第一句話),對(duì)an與{an}的區(qū)別進(jìn)行集體討論歸納。
3、通項(xiàng)公式的探索
。1)觀察歸納定義
由學(xué)生觀察引例中數(shù)列的項(xiàng)與它在數(shù)列中的位置(即項(xiàng)的序號(hào))間的關(guān)系:
實(shí)物投影:
序號(hào) 1 2 3 …… 64
↓ ↓ ↓ ↓
項(xiàng) 1= 21-1 2=22-1 22 = 23-1 …… 263
從而可看出項(xiàng)與項(xiàng)的序號(hào)之間可用一個(gè)公式:an =2n-1表示,該公式叫數(shù)列的通項(xiàng)公式,然后歸納抽象出數(shù)列的通項(xiàng)公式的定義(略)。
。2)用函數(shù)觀點(diǎn)看待數(shù)列:這是一個(gè)難點(diǎn),講解必須清楚、透徹。數(shù)列可看作是以自然數(shù)集或它的有限子集為定義域的函數(shù),當(dāng)自變量由小到大依次取值時(shí)對(duì)應(yīng)的一列函數(shù)值(這是數(shù)列的本質(zhì)),其圖象是一群孤立的點(diǎn),畫(huà)圖(棋盤麥粒這個(gè)數(shù)列)
設(shè)計(jì)意圖:加深對(duì)函數(shù)概念的理解。
。3)數(shù)列的分類,并口答引例及數(shù)列①②③④分別歸于哪類數(shù)列。
4、講解例題
設(shè)計(jì)例題:①根據(jù)通項(xiàng)公式寫(xiě)出前幾項(xiàng)并會(huì)判斷某個(gè)數(shù)是否為該數(shù)列中的項(xiàng);②根據(jù)數(shù)列的前幾項(xiàng)寫(xiě)出一個(gè)通項(xiàng)公式。
例1,根據(jù)下列數(shù)列{an}的通項(xiàng)公式,寫(xiě)出它的前5項(xiàng)
。1) an= n/(n+1) (2)an=(-1)n · n
設(shè)計(jì)意圖:使學(xué)生正確掌握通項(xiàng)與序號(hào)的關(guān)系。
變式訓(xùn)練:?jiǎn)?2589/2590是否為數(shù)列(1)中的項(xiàng)
設(shè)計(jì)意圖:使學(xué)生明確方程思想是解決數(shù)列問(wèn)題的重要方法。
例2,寫(xiě)出下列數(shù)列的一個(gè)通項(xiàng)公式,使它的前4項(xiàng)分別是下列各數(shù):
。1)1,3,5,7
。2)2, -2,2 ,-2
。3)1 ,11 ,111 ,
設(shè)計(jì)意圖:引導(dǎo)學(xué)生進(jìn)行解題后反思,對(duì)完善學(xué)生的認(rèn)知結(jié)構(gòu)是十分必要。寫(xiě)通項(xiàng)公式時(shí),就是要去發(fā)現(xiàn)an與n的關(guān)系,對(duì)各項(xiàng)進(jìn)行多角度、多層次觀察,找出這些項(xiàng)與相應(yīng)的項(xiàng)數(shù)(即序號(hào))之間的對(duì)應(yīng)關(guān)系。(注:遇到分?jǐn)?shù),可分別觀察分子組的數(shù)列特征與分母組成的數(shù)列特征;若為正負(fù)相間的項(xiàng),則可用-1的奇次冪或偶次冪進(jìn)行符號(hào)交換,有時(shí)也可根據(jù)相鄰的項(xiàng),適當(dāng)調(diào)整有關(guān)的表達(dá)式。)
5、練習(xí)鞏固
投影演示:
。1)寫(xiě)出數(shù)列1,-1,1,-1,……的一個(gè)通項(xiàng)公式
(2)是否所有數(shù)列都有通項(xiàng)公式?
上述(1)的設(shè)計(jì)意圖:an=(-1)n+1也可寫(xiě)成 (分段函數(shù)的形式)(當(dāng)n為奇數(shù)時(shí),n為偶數(shù)時(shí)),說(shuō)明根據(jù)數(shù)列的前幾項(xiàng)寫(xiě)出的通項(xiàng)公式可能不唯一。(2):引例②就沒(méi)有通項(xiàng)公式。通過(guò)這些練習(xí),使學(xué)生能及時(shí)消化,及時(shí)鞏固所學(xué)內(nèi)容。
6、歸納小結(jié)
由學(xué)生試著總結(jié)本節(jié)課所學(xué)內(nèi)容,老師適當(dāng)補(bǔ)充,可以訓(xùn)練學(xué)生的收斂思維,有助于完善學(xué)生的思維結(jié)構(gòu)。
(1) 數(shù)列及有關(guān)概念。
。2) 根據(jù)數(shù)列的通項(xiàng)公式求任意一項(xiàng),并能判斷某數(shù)是否為該數(shù)列中的項(xiàng)。
。3) 根據(jù)數(shù)列的前幾項(xiàng)寫(xiě)出數(shù)列的一個(gè)通項(xiàng)公式。
(4) 數(shù)列與函數(shù)的關(guān)系
7、課后作業(yè):
(1)課本P110/習(xí)題3.1/1(3)(4)(5);2、書(shū)P108/4(1)(3)(4)
。2)復(fù)習(xí)看書(shū)P106-107
六、評(píng)價(jià)與分析
本節(jié)課,教師可通過(guò)創(chuàng)設(shè)情景,適時(shí)引導(dǎo)的方式來(lái)激發(fā)學(xué)生積極思考的欲望,有時(shí)直接講解,有時(shí)組織掌握學(xué)生集體討論、探索發(fā)現(xiàn),課堂上除反復(fù)強(qiáng)調(diào)注意點(diǎn)外,還應(yīng)通過(guò)課堂練習(xí)和課后作業(yè)來(lái)強(qiáng)化它們。
通過(guò)本節(jié)課的學(xué)習(xí),學(xué)生不僅掌握了數(shù)列及有關(guān)概念,而且可體會(huì)到數(shù)學(xué)概念形成過(guò)程中蘊(yùn)含的基本數(shù)學(xué)思想:"函數(shù)思想、數(shù)形結(jié)合思想、特殊化思想",使之獲得內(nèi)心感受,提高了基本技能和解決問(wèn)題的能力,也可以逐漸學(xué)會(huì)辯證地看待問(wèn)題。
【關(guān)于高中數(shù)學(xué)說(shuō)課稿集錦六篇】相關(guān)文章:
關(guān)于高中數(shù)學(xué)說(shuō)課稿模板集錦八篇08-01
關(guān)于高中數(shù)學(xué)說(shuō)課稿模板集錦7篇07-31
關(guān)于高中數(shù)學(xué)說(shuō)課稿模板集錦10篇07-29
關(guān)于高中數(shù)學(xué)說(shuō)課稿模板集錦6篇07-27
關(guān)于高中數(shù)學(xué)說(shuō)課稿模板集錦七篇08-12
關(guān)于高中數(shù)學(xué)說(shuō)課稿范文集錦6篇08-11
關(guān)于高中數(shù)學(xué)說(shuō)課稿范文集錦5篇08-11