【熱門】高中數(shù)學(xué)說課稿四篇
作為一位不辭辛勞的人民教師,就有可能用到說課稿,說課稿有助于提高教師理論素養(yǎng)和駕馭教材的能力。那要怎么寫好說課稿呢?以下是小編幫大家整理的高中數(shù)學(xué)說課稿4篇,歡迎大家分享。
高中數(shù)學(xué)說課稿 篇1
尊敬的各位專家,評委:
上午好!
根據(jù)新課改的理論標準,我將從教材分析,學(xué)情分析,教學(xué)目標分析,學(xué)法、教法分析,教學(xué)過程分析,以及板書設(shè)計這六個方面來談?wù)勎覍滩牡睦斫夂徒虒W(xué)的設(shè)計。
一、教材分析
地位和作用:
《______________________》是北師大版高中數(shù)學(xué)必修二的第______章“__________”的第________節(jié)內(nèi)容。
本節(jié)是在學(xué)習(xí)了________________________________________之后編排的。通過本節(jié)課的學(xué)習(xí),既可以對_________________________________的知識進一步鞏固和深化,又可以為后面學(xué)習(xí)_________________________打下基礎(chǔ),所以_________________是本章的重要內(nèi)容。此外,《________________________》的知識與我們?nèi)粘I睢⑸a(chǎn)、科學(xué)研究有著密切的聯(lián)系,因此學(xué)習(xí)這部分有著廣泛的現(xiàn)實意義。
二、學(xué)情分析
1、學(xué)生已熟悉掌握______
2、學(xué)生的認知規(guī)律,是由整體到局部,具體到抽象發(fā)展的。
3、學(xué)生思維活躍,積極性高,已初步形成對數(shù)學(xué)問題的合作探究能力
4、學(xué)生層次參差不齊,個體差異還比較明顯
三、教學(xué)目標分析
根據(jù)《教學(xué)大綱》的要求和學(xué)生已有的知識基礎(chǔ)和認知能力,確定以下教學(xué)目標:
1、知識與技能:
2、過程與方法:通過___學(xué)習(xí),體會__的思想,培養(yǎng)學(xué)生提出問題,分析問題,解決問題的能力,提高交流表達能力,提高獨立獲取知識的能力。
3、情感態(tài)度與價值觀:培養(yǎng)把握空間圖形的能力,欣賞空間圖形所反應(yīng)的數(shù)學(xué)美(認識數(shù)學(xué)內(nèi)容之間的內(nèi)在聯(lián)系,加強數(shù)形結(jié)合的思想,形成正確的數(shù)學(xué)觀)。
教學(xué)重點:
難點:
四、學(xué)法、教法分析
。ㄒ唬⿲W(xué)法
首先,通過自學(xué)探究,培養(yǎng)學(xué)生的分析、歸納能力,提高學(xué)生合作學(xué)習(xí)的能力,學(xué)生課堂中體現(xiàn)自我,學(xué)會尋找問題的突破口,在探究中學(xué)會思考,在合作中學(xué)會推進,在觀察中學(xué)會比較,進而推進整個教學(xué)程序的展開。
其次,教學(xué)過程中,我想適時地根據(jù)學(xué)生的“最近發(fā)展區(qū)”搭建平臺,充分發(fā)揮“教師的主導(dǎo)作用和學(xué)生的主體地位相統(tǒng)一的教學(xué)規(guī)律”,
從學(xué)生原有的知識和能力出發(fā),指導(dǎo)學(xué)生學(xué)會觀察、分析、歸納問題的能力。
學(xué)生只有不斷地解決問題、產(chǎn)生成就感的過程中,才能真正地提高學(xué)習(xí)的興趣,也只有這樣才能“學(xué)”有新“思”,“思”有新“得”。
。ǘ┙谭
數(shù)學(xué)教育家波利亞曾經(jīng)說過:“學(xué)習(xí)任何知識的最佳途徑即是由自己去發(fā)現(xiàn),因為這種發(fā)現(xiàn)理解最深刻,也最容易掌握其中的發(fā)展規(guī)律、性質(zhì)和聯(lián)系。”根據(jù)學(xué)生的認知特點和知識水平,為落實重點、突破難點,本著以人為本,以學(xué)為中心的思想,本節(jié)課我將采用啟發(fā)式、合作探究的方式來進行教學(xué)。運用多媒體演示輔助教學(xué)的一種手段,以激發(fā)學(xué)生的求知欲,使學(xué)生主動參與數(shù)學(xué)實踐活動,以獨立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)問題、分析問題和解決問題。
五、教學(xué)過程分析
1、創(chuàng)設(shè)情境,引入問題。
新課標指出:“應(yīng)該讓學(xué)生在具體生動的情境中學(xué)習(xí)數(shù)學(xué)”。在本節(jié)課的教學(xué)中,從我們熟悉的生活情境中提出問題,問題的設(shè)計改變了傳統(tǒng)目的明確的設(shè)計方式,給學(xué)生最大的思考空間,充分體現(xiàn)學(xué)生主體地位。
2、發(fā)現(xiàn)問題,探究新知。
數(shù)學(xué)概念的形成來自解決實際問題和數(shù)學(xué)自身發(fā)展的需要.但概念的高度抽象,造成了難懂、難教和難學(xué),這就需要讓學(xué)生置身于符合自身實際的學(xué)習(xí)活動中去,從自己的經(jīng)驗和已有的知識基礎(chǔ)出發(fā),經(jīng)歷
“數(shù)學(xué)化”、“再創(chuàng)造”的活動過程.
3、深入探究,加深理解。
有效的數(shù)學(xué)學(xué)習(xí)過程,不能單純的模仿與記憶,數(shù)學(xué)思想的領(lǐng)悟和學(xué)習(xí)過程更是如此。讓學(xué)生在解題過程中親身經(jīng)歷和實踐體驗,師生互動學(xué)習(xí),生生合作交流,共同探究.
4、當(dāng)堂訓(xùn)練,鞏固提高。
通過學(xué)生的主體參與,使學(xué)生深切體會到本節(jié)課的主要內(nèi)容和思想方法,從而實現(xiàn)對知識識的再次深化。
5、小結(jié)歸納,拓展深化。
小結(jié)歸納不僅是對知識的簡單回顧,還要發(fā)揮學(xué)生的主體地位,從知識、方法、經(jīng)驗等方面進行總結(jié)。
6、作業(yè)設(shè)計
作業(yè)分為必做題和選做題。
針對學(xué)生能力和水平的差異,進行分層訓(xùn)練,在所有學(xué)生獲得共同知識基礎(chǔ)和基本能力的同時,讓學(xué)有余力的學(xué)生將學(xué)習(xí)從課堂延伸到課外,獲得更大的能力提升,這體現(xiàn)新課改理念,也是因材施教的教學(xué)原則的具體運用。
現(xiàn)代數(shù)學(xué)教學(xué)觀和新課改要求教學(xué)能從“讓學(xué)生學(xué)會”向“讓學(xué)生會學(xué)”轉(zhuǎn)變,使數(shù)學(xué)教學(xué)真正成為數(shù)學(xué)活動的教學(xué)。所以,本節(jié)課我們不僅僅是單純的傳授知識,而更應(yīng)該重視對數(shù)學(xué)方法的滲透。從熟悉的知識出發(fā),學(xué)生自主探索、合作交流激發(fā)學(xué)生的學(xué)習(xí)興趣,突破難點,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、解決問題的能力
六、板書設(shè)計
板書要基本體現(xiàn)整堂課的內(nèi)容與方法,體現(xiàn)課堂進程,能簡明扼要反映知識結(jié)構(gòu)及其相互聯(lián)系;突出本節(jié)重難點,能指導(dǎo)教師的教學(xué)進程、引導(dǎo)學(xué)生探索知識,啟迪學(xué)生思維。
我的說課到此結(jié)束,敬請各位專家、評委批評指正。
謝謝!
高中數(shù)學(xué)說課稿 篇2
一、教材地位與作用
本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時常考一些解答題。因此,正弦定理的知識非常重要。
二、學(xué)情分析
作為高一學(xué)生,同學(xué)們已經(jīng)掌握了基本的三角函數(shù),特別是在一些特殊三角形中,而學(xué)生們在解決任意三角形的邊與角問題,就比較困難。
教學(xué)重點:正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。
教學(xué)難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。
根據(jù)我的教學(xué)內(nèi)容與學(xué)情分析以及教學(xué)重難點,我制定了如下幾點教學(xué)目標
教學(xué)目標分析:
知識目標:理解并掌握正弦定理的證明,運用正弦定理解三角形。
能力目標:探索正弦定理的證明過程,用歸納法得出結(jié)論。
情感目標:通過推導(dǎo)得出正弦定理,讓學(xué)生感受數(shù)學(xué)公式的整潔對稱美和數(shù)學(xué)的實際應(yīng)用價值。
三、教法學(xué)法分析
教法:采用探究式課堂教學(xué)模式,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。
學(xué)法:指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學(xué)知識應(yīng)用于對任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,動手嘗試相結(jié)合,增強學(xué)生由特殊到一般的數(shù)學(xué)思維能力,鍥而不舍的求學(xué)精神。
四、教學(xué)過程
(一)創(chuàng)設(shè)情境,布疑激趣
“興趣是最好的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進入今天的學(xué)習(xí)課題。
(二)探尋特例,提出猜想
1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進行研究,發(fā)現(xiàn)正弦定理。
2.那結(jié)論對任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計算器等工具對一般三角形進行驗證。
3.讓學(xué)生總結(jié)實驗結(jié)果,得出猜想:
在三角形中,角與所對的邊滿足關(guān)系
這為下一步證明樹立信心,不斷的使學(xué)生對結(jié)論的認識從感性逐步上升到理性。
(三)邏輯推理,證明猜想
1.強調(diào)將猜想轉(zhuǎn)化為定理,需要嚴格的理論證明。
2.鼓勵學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進行證明。
3.提示學(xué)生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。
4.思考是否還有其他的方法來證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標法來證明。
(四)歸納總結(jié),簡單應(yīng)用
1.讓學(xué)生用文字敘述正弦定理,引導(dǎo)學(xué)生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學(xué)美的享受。
2.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。
3.運用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發(fā)學(xué)生知識后用于實際的價值觀。
(五)講解例題,鞏固定理
1.例1:在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。
例1簡單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。
2.例2:在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。
例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學(xué)生。
(六)課堂練習(xí),提高鞏固
1.在△ABC中,已知下列條件,解三角形。
(1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm
2.在△ABC中,已知下列條件,解三角形。
(1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°
學(xué)生板演,老師巡視,及時發(fā)現(xiàn)問題,并解答。
(七)小結(jié)反思,提高認識
通過以上的研究過程,同學(xué)們主要學(xué)到了那些知識和方法?你對此有何體會?
1.用向量證明了正弦定
理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。
2.它表述了三角形的邊與對角的正弦值的關(guān)系。
3.定理證明分別從直角、銳角、鈍角出發(fā),運用分類討論的思想。
(從實際問題出發(fā),通過猜想、實驗、歸納等思維方法,最后得到了推導(dǎo)出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結(jié)論,而且整個探索過程我們也掌握了研究問題的一般方法。在強調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動的教學(xué)。)
(八)任務(wù)后延,自主探究
如果已知一個三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過渡到下一節(jié)內(nèi)容,余弦定理。布置作業(yè),預(yù)習(xí)下一節(jié)內(nèi)容。
高中數(shù)學(xué)說課稿 篇3
一、教材分析
1.《指數(shù)函數(shù)》在教材中的地位、作用和特點
《指數(shù)函數(shù)》是人教版高中數(shù)學(xué)(必修)第一冊第二章“函數(shù)”的第六節(jié)內(nèi)容,是在學(xué)習(xí)了《指數(shù)》一節(jié)內(nèi)容之后編排的。通過本節(jié)課的學(xué)習(xí),既可以對指數(shù)和函數(shù)的概念等知識進一步鞏固和深化,又可以為后面進一步學(xué)習(xí)對數(shù)、對數(shù)函數(shù)尤其是利用互為反函數(shù)的圖象間的關(guān)系來研究對數(shù)函數(shù)的性質(zhì)打下堅實的概念和圖象基礎(chǔ),又因為《指數(shù)函數(shù)》是進入高中以后學(xué)生遇到的第一個系統(tǒng)研究的函數(shù),對高中階段研究對數(shù)函數(shù)、三角函數(shù)等完整的函數(shù)知識,初步培養(yǎng)函數(shù)的應(yīng)用意識打下了良好的學(xué)習(xí)基礎(chǔ),所以《指數(shù)函數(shù)》不僅是本章《函數(shù)》的重點內(nèi)容,也是高中學(xué)段的主要研究內(nèi)容之一,有著不可替代的重要作用。
此外,《指數(shù)函數(shù)》的知識與我們的日常生產(chǎn)、生活和科學(xué)研究有著緊密的聯(lián)系,尤其體現(xiàn)在細胞分裂、貸款利率的計算和考古中的年代測算等方面,因此學(xué)習(xí)這部分知識還有著廣泛的現(xiàn)實意義。本節(jié)內(nèi)容的特點之一是概念性強,特點之二是凸顯了數(shù)學(xué)圖形在研究函數(shù)性質(zhì)時的重要作用。
2.教學(xué)目標、重點和難點
通過初中學(xué)段的學(xué)習(xí)和高中對集合、函數(shù)等知識的系統(tǒng)學(xué)習(xí),學(xué)生對函數(shù)和圖象的關(guān)系已經(jīng)構(gòu)建了一定的認知結(jié)構(gòu),主要體現(xiàn)在三個方面:
知識維度:對正比例函數(shù)、反比例函數(shù)、一次函數(shù),二次函數(shù)等最簡單的函數(shù)概念和性質(zhì)已有了初步認識,能夠從初中運動變化的角度認識函數(shù)初步轉(zhuǎn)化到從集合與對應(yīng)的觀點來認識函數(shù)。
技能維度:學(xué)生對采用“描點法”描繪函數(shù)圖象的方法已基本掌握,能夠為研究《指數(shù)函數(shù)》的性質(zhì)做好準備。
素質(zhì)維度:由觀察到抽象的數(shù)學(xué)活動過程已有一定的體會,已初步了解了數(shù)形結(jié)合的思想。
鑒于對學(xué)生已有的知識基礎(chǔ)和認知能力的分析,根據(jù)《教學(xué)大綱》的要求,我確定本節(jié)課的教學(xué)目標、教學(xué)重點和難點如下:
(1)知識目標:
、僬莆罩笖(shù)函數(shù)的概念;
、谡莆罩笖(shù)函數(shù)的圖象和性質(zhì);
、勰艹醪嚼弥笖(shù)函數(shù)的概念解決實際問題;
(2)技能目標:
、贊B透數(shù)形結(jié)合的基本數(shù)學(xué)思想方法
、谂囵B(yǎng)學(xué)生觀察、聯(lián)想、類比、猜測、歸納的能力;
(3)情感目標:
、袤w驗從特殊到一般的學(xué)習(xí)規(guī)律,認識事物之間的普遍聯(lián)系與相互轉(zhuǎn)化,培養(yǎng)學(xué)生用聯(lián)系的觀點看問題②通過教學(xué)互動促進師生情感,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生抽象、概括、分析、綜合的能力
、垲I(lǐng)會數(shù)學(xué)科學(xué)的應(yīng)用價值。
(4)教學(xué)重點:指數(shù)函數(shù)的圖象和性質(zhì)。
(5)教學(xué)難點:指數(shù)函數(shù)的圖象性質(zhì)與底數(shù)a的關(guān)系。
突破難點的關(guān)鍵:尋找新知生長點,建立新舊知識的聯(lián)系,在理解概念的基礎(chǔ)上充分結(jié)合圖象,利用數(shù)形結(jié)合來掃清障礙。
二、教法設(shè)計
由于《指數(shù)函數(shù)》這節(jié)課的特殊地位,在本節(jié)課的教法設(shè)計中,我力圖通過這一節(jié)課的教學(xué)達到不僅使學(xué)生初步理解并能簡單應(yīng)用指數(shù)函數(shù)的知識,更期望能引領(lǐng)學(xué)生掌握研究初等函數(shù)圖象性質(zhì)的一般思路和方法,為今后研究其它的函數(shù)做好準備,從而達到培養(yǎng)學(xué)生學(xué)習(xí)能力的目的,我根據(jù)自己對“誘思探究”教學(xué)模式和“情景式”教學(xué)模式的認識,將二者結(jié)合起來,主要突出了幾個方面:
1.創(chuàng)設(shè)問題情景.按照指數(shù)函數(shù)的在生活中的實際背景給出兩個實例,充分調(diào)動學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生的探究心理,順利引入課題,而這兩個例子又恰好為研究指數(shù)函數(shù)中底數(shù)大于1和底數(shù)大于0小于1的圖象做好了準備。
2.強化“指數(shù)函數(shù)”概念.引導(dǎo)學(xué)生結(jié)合指數(shù)的有關(guān)概念來歸納出指數(shù)函數(shù)的定義,并向?qū)W生指出指數(shù)函數(shù)的形式特點,請學(xué)生思考對于底數(shù)a是否需要限制,如不限制會有什么問題出現(xiàn),這樣避免了學(xué)生對于底數(shù)a范圍分類的不清楚,也為研究指數(shù)函數(shù)的圖象做了“分類討論”的鋪墊。
3.突出圖象的作用.在數(shù)學(xué)學(xué)習(xí)過程中,圖形始終使我們需要借助的重要輔助手段。一位數(shù)學(xué)家曾經(jīng)說過“數(shù)離形時少直觀,形離數(shù)時難入微”,而在研究指數(shù)函數(shù)的性質(zhì)時,更是直接由圖象觀察得出性質(zhì),因此圖象發(fā)揮了主要的作用。
4.注意數(shù)學(xué)與生活和實踐的聯(lián)系.數(shù)學(xué)的本質(zhì)是來源于生活,服務(wù)于實踐。在課堂教學(xué)的引入、例題的講解和課外知識的拓展部分,都介紹了與指數(shù)函數(shù)息息相關(guān)的生活問題,力圖使學(xué)生了解到數(shù)學(xué)的基礎(chǔ)學(xué)科作用,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識。
三、學(xué)法指導(dǎo)
本節(jié)課是在學(xué)習(xí)完“指數(shù)”的概念和運算后編排的,針對學(xué)生實際情況,我主要在以下幾個方面做了嘗試:
1.再現(xiàn)原有認知結(jié)構(gòu)。在引入兩個生活實例后,請學(xué)生回憶有關(guān)指數(shù)的概念,幫助學(xué)生再現(xiàn)原有認知結(jié)構(gòu),為理解指數(shù)函數(shù)的概念做好準備。
2.領(lǐng)會常見數(shù)學(xué)思想方法。在借助圖象研究指數(shù)函數(shù)的性質(zhì)時會遇到分類討論、數(shù)形結(jié)合等基本數(shù)學(xué)思想方法,這些方法將會貫穿整個高中的數(shù)學(xué)學(xué)習(xí)。
3.在互相交流和自主探究中獲得發(fā)展。在生活實例的課堂導(dǎo)入、指數(shù)函數(shù)的性質(zhì)研究、例題與訓(xùn)練、課內(nèi)小節(jié)等教學(xué)環(huán)節(jié)中都安排了學(xué)生的討論、分組、交流等活動,讓學(xué)生變被動的接受和記憶知識為在合作學(xué)習(xí)的樂趣中主動地建構(gòu)新知識的框架和體系,從而完成知識的內(nèi)化過程。
4.注意學(xué)習(xí)過程的循序漸進。在概念、圖象、性質(zhì)、應(yīng)用、拓展的過程中按照先易后難的順序?qū)訉舆f進,讓學(xué)生感到有挑戰(zhàn)、有收獲,跳一跳,夠得著,不同難度的題目設(shè)計將盡可能照顧到課堂學(xué)生的個體差異。
四、程序設(shè)計
在設(shè)計本節(jié)課的教學(xué)過程中,本著遵循學(xué)生的認知規(guī)律、讓學(xué)生去經(jīng)歷知識的形成與發(fā)展過程的原則,我設(shè)計了如下的教學(xué)程序,啟發(fā)學(xué)生逐步發(fā)現(xiàn)和認識指數(shù)函數(shù)的圖象和性質(zhì)。
1.創(chuàng)設(shè)情景、導(dǎo)入新課
教師活動:
、儆秒娔X展示兩個實例,第一個是計算機價格下降問題,第二個是生物中細胞分裂的例子,
、趯W(xué)生按奇數(shù)列、偶數(shù)列分組。
學(xué)生活動:
、俜謩e寫出計算機價格y與經(jīng)過月份x的關(guān)系式和細胞個數(shù)y與分裂次數(shù)x的關(guān)系式,并互相交流;
②回憶指數(shù)的概念;
、蹥w納指數(shù)函數(shù)的概念;
、芊治龀鰧χ笖(shù)函數(shù)底數(shù)討論的必要性以及分類的方法。
設(shè)計意圖:通過生活實例激發(fā)學(xué)生的學(xué)習(xí)動機,,掃清由概念不清而造成的知識障礙,培養(yǎng)學(xué)生思維的主動性, 為突破難點做好準備;
2.啟發(fā)誘導(dǎo)、探求新知
教師活動:
、俳o出兩個簡單的指數(shù)函數(shù)并要求學(xué)生畫它們的圖象②在準備好的小黑板上規(guī)范地畫出這兩個指數(shù)函數(shù)的'圖象③板書指數(shù)函數(shù)的性質(zhì)。
學(xué)生活動:
、佼嫵鰞蓚簡單的指數(shù)函數(shù)圖象
、诮涣鳌⒂懻
、蹥w納出研究函數(shù)性質(zhì)涉及的方面
、芸偨Y(jié)出指數(shù)函數(shù)的性質(zhì)。
設(shè)計意圖:讓學(xué)生動手作簡單的指數(shù)函數(shù)的圖象對深刻理解本節(jié)課的內(nèi)容有著一定的促進作用,在學(xué)生完成基本作圖之后,教師再利用課前已列表、建立坐標系的小黑板展示準確的作圖方法,達到進一步規(guī)范學(xué)生的作圖習(xí)慣的目的,然后借助“函數(shù)作圖器”用多媒體將指數(shù)函數(shù)的圖象推廣到一般情況,學(xué)生就會很自然的通過觀察圖象總結(jié)出指數(shù)函數(shù)的性質(zhì),同時對于底數(shù)的討論也就變得順理成章。
3.鞏固新知、反饋回授
教師活動:
、侔鍟1
、诎鍟2第一問
、劢榻B有關(guān)考古的拓展知識。
高中數(shù)學(xué)說課稿 篇4
【一】教學(xué)背景分析
1.教材結(jié)構(gòu)分析
《圓的方程》安排在高中數(shù)學(xué)第二冊(上)第七章第六節(jié).圓作為常見的簡單幾何圖形,在實際生活和生產(chǎn)實踐中有著廣泛的應(yīng)用.圓的方程屬于解析幾何學(xué)的基礎(chǔ)知識,是研究二次曲線的開始,對后續(xù)直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容的學(xué)習(xí),無論在知識上還是方法上都有著積極的意義,所以本節(jié)內(nèi)容在整個解析幾何中起著承前啟后的作用.
2.學(xué)情分析
圓的方程是學(xué)生在初中學(xué)習(xí)了圓的概念和基本性質(zhì)后,又掌握了求曲線方程的一般方法的基礎(chǔ)上進行研究的.但由于學(xué)生學(xué)習(xí)解析幾何的時間還不長、學(xué)習(xí)程度較淺,且對坐標法的運用還不夠熟練,在學(xué)習(xí)過程中難免會出現(xiàn)困難.另外學(xué)生在探究問題的能力,合作交流的意識等方面有待加強.
根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認知結(jié)構(gòu)和心理特征,我制定如下教學(xué)目標:
3.教學(xué)目標
(1) 知識目標:①掌握圓的標準方程;
、跁蓤A的標準方程寫出圓的半徑和圓心坐標,能根據(jù)條件寫出圓的標準方程;
、劾脠A的標準方程解決簡單的實際問題.
(2) 能力目標:①進一步培養(yǎng)學(xué)生用代數(shù)方法研究幾何問題的能力;
、诩由顚(shù)形結(jié)合思想的理解和加強對待定系數(shù)法的運用;
③增強學(xué)生用數(shù)學(xué)的意識.
(3) 情感目標:①培養(yǎng)學(xué)生主動探究知識、合作交流的意識;
、谠隗w驗數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣.
根據(jù)以上對教材、教學(xué)目標及學(xué)情的分析,我確定如下的教學(xué)重點和難點:
4. 教學(xué)重點與難點
(1)重點:圓的標準方程的求法及其應(yīng)用.
(2)難點: ①會根據(jù)不同的已知條件求圓的標準方程;
②選擇恰當(dāng)?shù)淖鴺讼到鉀Q與圓有關(guān)的實際問題.
為使學(xué)生能達到本節(jié)設(shè)定的教學(xué)目標,我再從教法和學(xué)法上進行分析:
好學(xué)教育:
【二】教法學(xué)法分析
1.教法分析 為了充分調(diào)動學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“啟發(fā)式”問題教學(xué)法,用環(huán)環(huán)相扣的問題將探究活動層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區(qū)上.另外我恰當(dāng)?shù)睦枚嗝襟w課件進行輔助教學(xué),借助信息技術(shù)創(chuàng)設(shè)實際問題的情境既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又直觀的引導(dǎo)了學(xué)生建模的過程.
2.學(xué)法分析 通過推導(dǎo)圓的標準方程,加深對用坐標法求軌跡方程的理解.通過求圓的標準方程,理解必須具備三個獨立的條件才可以確定一個圓.通過應(yīng)用圓的標準方程,熟悉用待定系數(shù)法求的過程. 下面我就對具體的教學(xué)過程和設(shè)計加以說明:
【三】教學(xué)過程與設(shè)計
整個教學(xué)過程是由七個問題組成的問題鏈驅(qū)動的,共分為五個環(huán)節(jié):
創(chuàng)設(shè)情境 啟迪思維 深入探究 獲得新知 應(yīng)用舉例 鞏固提高
反饋訓(xùn)練 形成方法 小結(jié)反思 拓展引申
下面我從縱橫兩方面敘述我的教學(xué)程序與設(shè)計意圖.
首先:縱向敘述教學(xué)過程
(一)創(chuàng)設(shè)情境——啟迪思維
問題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7m,高為3m的貨車能不能駛?cè)脒@個隧道?
通過對這個實際問題的探究,把學(xué)生的思維由用勾股定理求線段CD的長度轉(zhuǎn)移為用曲線的方程來解決.一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結(jié)論的同時學(xué)生自己推導(dǎo)出了圓心在原點,半徑為4的圓的標準方程,從而很自然的進入了本課的主題.用實際問題創(chuàng)設(shè)問題情境,讓學(xué)生感受到問題來源于實際,應(yīng)用于實際,激發(fā)了學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)欲望.這樣獲取的知識,不但易于保持,而且易于遷移.
通過對問題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標法研究圓的方程上來,此時再把問題深入,進入第二環(huán)節(jié).
(二)深入探究——獲得新知
問題二 1.根據(jù)問題一的探究能不能得到圓心在原點,半徑為的圓的方程?
2.如果圓心在,半徑為時又如何呢?
好學(xué)教育:
這一環(huán)節(jié)我首先讓學(xué)生對問題一進行歸納,得到圓心在原點,半徑為4的圓的標準方程后,引導(dǎo)學(xué)生歸納出圓心在原點,半徑為r的圓的標準方程.然后再讓學(xué)生對圓心不在原點的情況進行探究.我預(yù)設(shè)了三種方法等待著學(xué)生的探究結(jié)果,分別是:坐標法、圖形變換法、向量平移法.
得到圓的標準方程后,我設(shè)計了由淺入深的三個應(yīng)用平臺,進入第三環(huán)節(jié).
(三)應(yīng)用舉例——鞏固提高
I.直接應(yīng)用 內(nèi)化新知
問題三 1.寫出下列各圓的標準方程:
(1)圓心在原點,半徑為3;
(2)經(jīng)過點,圓心在點.
2.寫出圓的圓心坐標和半徑.
我設(shè)計了兩個小問題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握圓心坐標、半徑與圓的標準方程之間的關(guān)系,為后面探究圓的切線問題作準備.
II.靈活應(yīng)用 提升能力
問題四 1.求以點為圓心,并且和直線相切的圓的方程.
2.求過點,圓心在直線上且與軸相切的圓的方程.
3.已知圓的方程為,求過圓上一點的切線方程.
你能歸納出具有一般性的結(jié)論嗎?
已知圓的方程是,經(jīng)過圓上一點的切線的方程是什么?
我設(shè)計了三個小問題,第一個小題有了剛剛解決問題三的基礎(chǔ),學(xué)生會很快求出半徑,根據(jù)圓心坐標寫出圓的標準方程.第二個小題有些困難,需要引導(dǎo)學(xué)生應(yīng)用待定系數(shù)法確定圓心坐標和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓.第三個小題解決方法較多,我預(yù)設(shè)了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng)設(shè)了空間.最后我讓學(xué)生由第三小題的結(jié)論進行歸納、猜想,在論證經(jīng)過圓上一點圓的切線方程的過程中,又一次模擬了真理發(fā)現(xiàn)的過程,使探究氣氛達到高潮.
III.實際應(yīng)用 回歸自然
問題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0.01m).
好學(xué)教育:
我選用了教材的例3,它是待定系數(shù)法求出圓的三個參數(shù)的又一次應(yīng)用,同時也與引例相呼應(yīng),使學(xué)生形成解決實際問題的一般方法,培養(yǎng)了學(xué)生建模的習(xí)慣和用數(shù)學(xué)的意識.
(四)反饋訓(xùn)練——形成方法
問題六 1.求過原點和點,且圓心在直線上的圓的標準方程.
2.求圓過點的切線方程.
3.求圓過點的切線方程.
接下來是第四環(huán)節(jié)——反饋訓(xùn)練.這一環(huán)節(jié)中,我設(shè)計三個小題作為鞏固性訓(xùn)練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗學(xué)習(xí)數(shù)學(xué)的樂趣,成功的喜悅,找到自信,增強學(xué)習(xí)數(shù)學(xué)的愿望與信心.另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學(xué)生剛剛歸納了過圓上一點圓的切線方程,因此很容易產(chǎn)生思維的負遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時引導(dǎo)學(xué)生用數(shù)形結(jié)合的思想,結(jié)合初中已有的圓的知識進行判斷,這樣的設(shè)計對培養(yǎng)學(xué)生思維的嚴謹性具有良好的效果.
(五)小結(jié)反思——拓展引申
1.課堂小結(jié)
把圓的標準方程與過圓上一點圓的切線方程加以小結(jié),提煉數(shù)形結(jié)合的思想和待定系數(shù)的方法 ①圓心為,半徑為r 的圓的標準方程為:
圓心在原點時,半徑為r 的圓的標準方程為:.
②已知圓的方程是,經(jīng)過圓上一點的切線的方程是:.
2.分層作業(yè)
(A)鞏固型作業(yè):教材P81-82:(習(xí)題7.6)1,2,4.(B)思維拓展型作業(yè):試推導(dǎo)過圓上一點的切線方程.
3.激發(fā)新疑
問題七 1.把圓的標準方程展開后是什么形式?
2.方程表示什么圖形?
在本課的結(jié)尾設(shè)計這兩個問題,作為對這節(jié)課內(nèi)容的鞏固與延伸,讓學(xué)生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產(chǎn)生了.在知識的拓展中再次掀起學(xué)生探究的熱情.另外它為下節(jié)課研究圓的一般方程作了重要的準備.
以上是我縱向的教學(xué)過程及簡單的設(shè)計意圖,接下來,我從三個方面橫向的進一步闡述我的教學(xué)設(shè)計: 橫向闡述教學(xué)設(shè)計
(一)突出重點 抓住關(guān)鍵 突破難點
好學(xué)教育:
求圓的標準方程既是本節(jié)課的教學(xué)重點也是難點,為此我布設(shè)了由淺入深的學(xué)習(xí)環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標準方程之間的關(guān)系,逐步理解三個參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點的同時突破了難點.
第二個教學(xué)難點就是解決實際應(yīng)用問題,這是學(xué)生固有的難題,主要是因為應(yīng)用問題的題目冗長,學(xué)生很難根據(jù)問題情境構(gòu)建數(shù)學(xué)模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進行引入,激發(fā)學(xué)生的求知欲,同時我借助多媒體課件的演示,引導(dǎo)學(xué)生真正走入問題的情境之中,并從中抽象出數(shù)學(xué)模型,從而消除畏難情緒,增強了信心.最后再形成應(yīng)用圓的標準方程解決實際問題的一般模式,并嘗試應(yīng)用該模式分析和解決第二個應(yīng)用問題——問題五.這樣的設(shè)計,使學(xué)生在解決問題的同時,形成了方法,難點自然突破.
(二)學(xué)生主體 教師主導(dǎo) 探究主線
本節(jié)課的設(shè)計用問題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動貫穿始終.從圓的標準方程的推導(dǎo)到應(yīng)用都是在問題的指引、我的指導(dǎo)下,由學(xué)生探究完成的.另外,我重點設(shè)計了兩次思維發(fā)散點,分別是問題二和問題四的第三問,要求學(xué)生分組討論,合作交流,為學(xué)生設(shè)立充分的探究空間,學(xué)生在交流成果的過程中,既體驗了科學(xué)研究和真理發(fā)現(xiàn)的復(fù)雜與艱辛,又在我的適度引導(dǎo)、側(cè)面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅(qū)動下,高效的完成本節(jié)的學(xué)習(xí)任務(wù).
(三)培養(yǎng)思維 提升能力 激勵創(chuàng)新
為了培養(yǎng)學(xué)生的理性思維,我分別在問題一和問題四中,設(shè)計了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力.在問題的設(shè)計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時對所學(xué)知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行.
以上是我對這節(jié)課的教學(xué)預(yù)設(shè),具體的教學(xué)過程還要根據(jù)學(xué)生在課堂中的具體情況適當(dāng)調(diào)整,向生成性課堂進行轉(zhuǎn)變.最后我以赫爾巴特的一句名言結(jié)束我的說課,發(fā)揮我們的創(chuàng)造性,力爭“使教育過程成為一種藝術(shù)的事業(yè)”.
【【熱門】高中數(shù)學(xué)說課稿四篇】相關(guān)文章:
高中數(shù)學(xué)經(jīng)典說課稿范文06-24
高中數(shù)學(xué)說課稿15篇10-16
高中數(shù)學(xué)經(jīng)典優(yōu)秀說課稿模板07-14
高中數(shù)學(xué)說課稿10篇06-13
高中數(shù)學(xué)說課稿三篇06-09