有關(guān)高中數(shù)學(xué)說課稿合集8篇
作為一無名無私奉獻的教育工作者,可能需要進行說課稿編寫工作,說課稿有利于教學(xué)水平的提高,有助于教研活動的開展。優(yōu)秀的說課稿都具備一些什么特點呢?下面是小編幫大家整理的高中數(shù)學(xué)說課稿8篇,僅供參考,大家一起來看看吧。
高中數(shù)學(xué)說課稿 篇1
一、教材地位與作用
本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時常考一些解答題。因此,正弦定理的知識非常重要。
二、學(xué)情分析
作為高一學(xué)生,同學(xué)們已經(jīng)掌握了基本的三角函數(shù),特別是在一些特殊三角形中,而學(xué)生們在解決任意三角形的邊與角問題,就比較困難。
教學(xué)重點:正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。
教學(xué)難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。
根據(jù)我的教學(xué)內(nèi)容與學(xué)情分析以及教學(xué)重難點,我制定了如下幾點教學(xué)目標(biāo)
教學(xué)目標(biāo)分析:
知識目標(biāo):理解并掌握正弦定理的證明,運用正弦定理解三角形。
能力目標(biāo):探索正弦定理的證明過程,用歸納法得出結(jié)論。
情感目標(biāo):通過推導(dǎo)得出正弦定理,讓學(xué)生感受數(shù)學(xué)公式的整潔對稱美和數(shù)學(xué)的實際應(yīng)用價值。
三、教法學(xué)法分析
教法:采用探究式課堂教學(xué)模式,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。
學(xué)法:指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學(xué)知識應(yīng)用于對任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,動手嘗試相結(jié)合,增強學(xué)生由特殊到一般的數(shù)學(xué)思維能力,鍥而不舍的求學(xué)精神。
四、教學(xué)過程
(一)創(chuàng)設(shè)情境,布疑激趣
“興趣是最好的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進入今天的學(xué)習(xí)課題。
(二)探尋特例,提出猜想
1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進行研究,發(fā)現(xiàn)正弦定理。
2.那結(jié)論對任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計算器等工具對一般三角形進行驗證。
3.讓學(xué)生總結(jié)實驗結(jié)果,得出猜想:
在三角形中,角與所對的邊滿足關(guān)系
這為下一步證明樹立信心,不斷的使學(xué)生對結(jié)論的認識從感性逐步上升到理性。
(三)邏輯推理,證明猜想
1.強調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。
2.鼓勵學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進行證明。
3.提示學(xué)生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。
4.思考是否還有其他的方法來證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標(biāo)法來證明。
(四)歸納總結(jié),簡單應(yīng)用
1.讓學(xué)生用文字敘述正弦定理,引導(dǎo)學(xué)生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學(xué)美的享受。
2.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。
3.運用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發(fā)學(xué)生知識后用于實際的價值觀。
(五)講解例題,鞏固定理
1.例1:在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。
例1簡單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。
2.例2:在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。
例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學(xué)生。
(六)課堂練習(xí),提高鞏固
1.在△ABC中,已知下列條件,解三角形。
(1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm
2.在△ABC中,已知下列條件,解三角形。
(1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°
學(xué)生板演,老師巡視,及時發(fā)現(xiàn)問題,并解答。
(七)小結(jié)反思,提高認識
通過以上的研究過程,同學(xué)們主要學(xué)到了那些知識和方法?你對此有何體會?
1.用向量證明了正弦定
理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。
2.它表述了三角形的邊與對角的正弦值的關(guān)系。
3.定理證明分別從直角、銳角、鈍角出發(fā),運用分類討論的思想。
(從實際問題出發(fā),通過猜想、實驗、歸納等思維方法,最后得到了推導(dǎo)出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結(jié)論,而且整個探索過程我們也掌握了研究問題的一般方法。在強調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動的教學(xué)。)
(八)任務(wù)后延,自主探究
如果已知一個三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過渡到下一節(jié)內(nèi)容,余弦定理。布置作業(yè),預(yù)習(xí)下一節(jié)內(nèi)容。
高中數(shù)學(xué)說課稿 篇2
各位評委:下午好!
我叫 ,來自 。今天我說課的課題《 》(第 課時)。下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點分析、教法與學(xué)法、課堂設(shè)計五方面逐一加以分析和說明。
一、教材分析
。ㄒ唬┙滩牡牡匚缓妥饔
《 》是人教版出版社 第 冊、第 單元的內(nèi)容!丁芳仁 在知識上的延伸和發(fā)展,又是本章 的運用與鞏固,也為下一章 教學(xué)作鋪墊,起著鏈條的作用。同時,這部分內(nèi)容較好地反映了 的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識。
概括地講,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性。
(二)、學(xué)情分析
通過前一階段的教學(xué),學(xué)生對 的認識已有了一定的認知結(jié)構(gòu),主要體現(xiàn)在三個層面:
知識層面:學(xué)生在已初步掌握了 。
能力層面:學(xué)生在初步已經(jīng)掌握了用
初步具備了 思想。 情感層面:學(xué)生對數(shù)學(xué)新內(nèi)容的學(xué)習(xí)有相當(dāng)?shù)呐d趣和積極性。但探究問題的能力以及合作交流等方面發(fā)展不夠均衡.
(三)教學(xué)課時
本節(jié)內(nèi)容分 課時學(xué)習(xí)。(本課時,品味數(shù)學(xué)中的和諧美,體驗成功的樂趣。)
二、教學(xué)目標(biāo)分析
根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點和高中生的認知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:
知識與技能:
過程與方法:
情感態(tài)度:
。ɡ纾簞(chuàng)設(shè)問題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強化學(xué)生參與意識及主體作用。在自主探究與討論交流過程中,培養(yǎng)學(xué)生的合作意識和創(chuàng)新精神. 通過 對立統(tǒng)一關(guān)系的認識,對學(xué)生進行辨證唯物主義教育)
在探索過程中,培養(yǎng)獨立獲取數(shù)學(xué)知識的能力。在解決問題的過程中,讓學(xué)生感受到成功的喜悅,樹立學(xué)好數(shù)學(xué)的信心。在解答數(shù)學(xué)問題時,讓學(xué)生養(yǎng)成理性思維的品質(zhì)。
三、重難點分析
重點確定為:
要把握這個重點。關(guān)鍵在于理解
其本質(zhì)就是
本節(jié)課的難點確定為:
要突破這個難點,讓學(xué)生歸納
作鋪墊。
四、教法與學(xué)法分析
(一)學(xué)法指導(dǎo)
教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機會,教給了學(xué)生獲取知識的途徑、思考問題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會逐步感受到數(shù)學(xué)的美,會產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。
。ǘ┙谭ǚ治
本節(jié)課設(shè)計的指導(dǎo)思想是:現(xiàn)代認知心理學(xué)--建構(gòu)主義學(xué)習(xí)理論。
建構(gòu)主義學(xué)習(xí)理論認為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動的建構(gòu)活動,學(xué)生應(yīng)與一定的知識背景即情景相聯(lián)系,在實際情景下進行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗同化和索引出當(dāng)前要學(xué)習(xí)的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。
本節(jié)課采用“誘思探究教學(xué)法”( 陜西師范大學(xué)教育研究所張熊飛教授)。在課堂教學(xué)中凸顯學(xué)生主體地位的重要性,不再是以教師為中心去設(shè)計教學(xué)過程,而是以學(xué)生為主體去組織教學(xué)進程。把課堂真正地交給了學(xué)生,學(xué)生主體地位得以實現(xiàn)。
五、說教學(xué)過程
本節(jié)課的教學(xué)設(shè)計充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,遵循學(xué)生的認知規(guī)律,體現(xiàn)理論聯(lián)系實際、循序漸進和因材施教的教學(xué)原則,通過問題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問題解決的探索過程中,由學(xué)會走向會學(xué),由被動答題走向主動探究。
。ㄒ唬﹦(chuàng)設(shè)情景………………….
。ǘ┍扰f悟新………………….
。ㄈw納提煉…………………
。ㄋ模⿷(yīng)用新知,熟練掌握 …………………
。ㄎ澹┛偨Y(jié)…………………
。┳鳂I(yè)布置…………………
。ㄆ撸┌鍟O(shè)計…………………
以上是我對本節(jié)課的一些粗淺的認識和構(gòu)想,如有不妥之處,懇請各位專家批評指正。謝謝
著名美國數(shù)學(xué)家和數(shù)學(xué)教育家波利亞 包括“弄清問題”、“擬定計劃”、“實現(xiàn)計劃”和“回顧反思”四大步驟的解題全過程,它們就好比是尋找和發(fā)現(xiàn)解法的思維過程進行分解,使我們對解題的思維過程看得見,摸得著,易于操作。精髓是啟發(fā)你去聯(lián)想。聯(lián)想什么?怎樣聯(lián)想?
高中數(shù)學(xué)說課稿 篇3
尊敬的各位專家、評委:
上午好!
今天我說課的課題是人教A版必修1第二章第二節(jié)《對數(shù)函數(shù)》。
我嘗試?yán)眯抡n標(biāo)的理念來指導(dǎo)教學(xué),對于本節(jié)課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標(biāo)分析、教法學(xué)法分析、教學(xué)過程分析和評價分析五個方面來談?wù)勎覍滩牡睦斫夂徒虒W(xué)的設(shè)計,敬請各位專家、評委批評指正。
一、教材分析
地位和作用
本章學(xué)習(xí)是在學(xué)生完成函數(shù)的第一階段學(xué)習(xí)(初中)的基礎(chǔ)上,進行第二階段的函數(shù)學(xué)習(xí)。而對數(shù)函數(shù)作為這一階段的重要的基本初等函數(shù)之一,它是在學(xué)生已經(jīng)學(xué)習(xí)了指數(shù)函數(shù)及對數(shù)的內(nèi)容,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用!皩(shù)函數(shù)”這節(jié)教材,是在沒有學(xué)習(xí)反函數(shù)的基礎(chǔ)上研究的指數(shù)函數(shù)和對數(shù)函數(shù)的自變量和因變量之間的關(guān)系。同時對數(shù)函數(shù)作為常用數(shù)學(xué)模型在解決社會生活中的實例有著廣泛的應(yīng)用,本節(jié)課的學(xué)習(xí)為學(xué)生進一步學(xué)習(xí),參加生產(chǎn)和實際生活提供必要的基礎(chǔ)知識。
二、目標(biāo)分析
。ㄒ唬⒔虒W(xué)目標(biāo)
根據(jù)《對數(shù)函數(shù)》在教材內(nèi)容中的地位與作用,結(jié)合學(xué)情分析,本節(jié)課教學(xué)應(yīng)實現(xiàn)如下的教學(xué)目標(biāo):
1、知識與技能
。1)、進一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型;
。2)、理解對數(shù)函數(shù)的概念、掌握對數(shù)函數(shù)的圖像和性質(zhì);
。3)、由實際問題出發(fā),培養(yǎng)學(xué)生探索知識和抽象概括知識等方面的能力。
2、過程與方法
引導(dǎo)學(xué)生觀察,探尋變量和變量的對應(yīng)關(guān)系,通過歸納、抽象、概括,自主建構(gòu)對數(shù)函數(shù)的概念;體驗結(jié)合舊知識探索新知識,研究新問題的快樂。
3、情感態(tài)度與價值觀
通過對對數(shù)函數(shù)函數(shù)圖像和性質(zhì)的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。在民主、和諧的教學(xué)氣氛中,促進師生的情感交流。
。ǘ┙虒W(xué)重點、難點及關(guān)鍵
1、重點:對數(shù)函數(shù)的概念、圖像和性質(zhì);在教學(xué)中只有突出這個重點,才能使教材脈絡(luò)分明,才能有利于學(xué)生聯(lián)系舊知識,學(xué)習(xí)新知識。
2、 難點:底數(shù)a對對數(shù)函數(shù)的圖像和性質(zhì)的影響。
[關(guān)鍵]對數(shù)函數(shù)與指數(shù)函數(shù)的`類比教學(xué)。
由指數(shù)函數(shù)的圖像過渡到對數(shù)函數(shù)的圖像,通過類比分析達到深刻地了解對數(shù)函數(shù)的圖像及其性質(zhì)是掌握重點和突破難點的關(guān)鍵,在教學(xué)中一定要使學(xué)生的思考緊緊圍繞圖像,數(shù)形結(jié)合,加強直觀教學(xué),使學(xué)生能形成以圖像為根本,以性質(zhì)為主體的知識網(wǎng)絡(luò),同時在立體的講解中,重視加強題組的設(shè)計和變形,使教學(xué)真正體現(xiàn)出由淺入深,由易到難,由具體到抽象的特點,從而突破重點、突破難點。
三、教法、學(xué)法分析
。ㄒ唬、教法
教學(xué)過程是教師和學(xué)生共同參與的過程,啟發(fā)學(xué)生自主性學(xué)習(xí),充分調(diào)動學(xué)生的積極性、主動性;有效地滲透數(shù)學(xué)思想方法,提高學(xué)生素質(zhì)。根據(jù)這樣的原則和所要完成的教學(xué)目標(biāo),并為激發(fā)學(xué)生的學(xué)習(xí)興趣,我采用如下的教學(xué)方法:
1、啟發(fā)引導(dǎo)學(xué)生思考、分析、實驗、探索、歸納;
2、采用“從特殊到一般”、“從具體到抽象”的方法;
3、體現(xiàn)“對比聯(lián)系”、“數(shù)形結(jié)合”及“分類討論”的思想方法;
4、投影儀演示法。
在整個過程中,應(yīng)以學(xué)生看,學(xué)生想,學(xué)生議,學(xué)生練為主體,教師在學(xué)生仔細觀察、類比、想象的基礎(chǔ)上通過問題串的形式加以引導(dǎo)點撥,與指數(shù)函數(shù)性質(zhì)對照,歸納,整理,只有這樣,才能喚起學(xué)生對原有知識的回憶,自覺地找到新舊知識的聯(lián)系,使新學(xué)知識更牢固,理解更深刻。
(二)、學(xué)法
教給學(xué)生方法比教給學(xué)生知識更重要,本節(jié)課注重調(diào)動學(xué)生積極思考、主動探索,盡可能地增加學(xué)生參與教學(xué)活動的時間和空間,我進行了以下學(xué)法指導(dǎo):
1、對照比較學(xué)習(xí)法:學(xué)習(xí)對數(shù)函數(shù),處處與指數(shù)函數(shù)相對照;
2、探究式學(xué)習(xí)法:學(xué)生通過分析、探索,得出對數(shù)函數(shù)的定義;
3、自主性學(xué)習(xí)法:通過實驗畫出函數(shù)圖像、觀察圖像自得其性質(zhì);
4、反饋練習(xí)法:檢驗知識的應(yīng)用情況,找出未掌握的內(nèi)容及其差距。
四、教學(xué)過程分析
。ㄒ唬、教學(xué)過程設(shè)計
1、創(chuàng)設(shè)情境,提出問題。
在某細胞分裂過程中,細胞個數(shù)y是分裂次數(shù)x的函數(shù)y=2x,因此,知道x的值(輸入值是分裂次數(shù))就能求出y的值(輸出值為細胞的個數(shù)),這樣就建立了一個細胞個數(shù)和分裂次數(shù)x之間的函數(shù)關(guān)系式。
問題一:這是一個怎樣的函數(shù)模型類型呢?
設(shè)計意圖
復(fù)習(xí)指數(shù)函數(shù)
問題二:現(xiàn)在我們來研究相反的問題,如果知道了細胞的個數(shù)y,如何求分裂的次數(shù)x呢?這將會是我們研究的哪類問題?
設(shè)計意圖
為了引出對數(shù)函數(shù)
問題三:在關(guān)系式x=log2y每輸入一個細胞的個數(shù)y的值,是否一定都能得到唯一一個分裂次數(shù)x的值呢?
設(shè)計意圖
。1)、為了讓學(xué)生更好地理解函數(shù);
。2)、為了讓學(xué)生更好地理解對數(shù)函數(shù)的概念。
2、引導(dǎo)探究,建構(gòu)概念。
(1)、對數(shù)函數(shù)的概念:
同樣,在前面提到的發(fā)射性物質(zhì),經(jīng)過的時間x年與物質(zhì)剩余量y的關(guān)系式為y=0.84x,我們也可以把它改成對數(shù)式x=log0.84y,其中x年夜可以看作物質(zhì)剩余量y的函數(shù),可見這樣的問題在現(xiàn)實生活中還是不少的。
設(shè)計意圖
前面的問題情景的底數(shù)為2,而這個問題情景的底數(shù)是0.84,我認為這個情景并不是多余的,其實它暗示了對數(shù)函數(shù)的底數(shù)與指數(shù)函數(shù)的底數(shù)一樣有兩類。
但是在習(xí)慣上,我們用x表示自變量,用y表示函數(shù)值。
問題一:你能把以上兩個函數(shù)表示出來嗎?
問題二:你能得到此類函數(shù)的一般式嗎?
設(shè)計意圖
體現(xiàn)出了由特殊到一般的數(shù)學(xué)思想
問題三:在y=logax中,a有什么限制條件嗎?請結(jié)合指數(shù)式給以解釋。
問題四:你能根據(jù)指數(shù)函數(shù)的定義給出對數(shù)函數(shù)的定義嗎?
問題五:x=logay與y=ax中的x,y的相同之處是什么?不同之處是什么?
設(shè)計意圖
前四個問題是為了引導(dǎo)出對數(shù)函數(shù)的概念,然而,光有前四個問題還是不夠的,學(xué)生最容易忽略或最不容易理解的是函數(shù)的定義域,所以設(shè)計這個問題是為了讓學(xué)生更好地理解對數(shù)函數(shù)的定義域。
。2)、對數(shù)函數(shù)的圖像與性質(zhì)
問題:有了研究指數(shù)函數(shù)的經(jīng)歷,你覺得下面該學(xué)習(xí)什么內(nèi)容了?
設(shè)計意圖
提示學(xué)生進行類比學(xué)習(xí)
合作探究1:借助計算器在同一直角坐標(biāo)系中畫出下列兩組函數(shù)的圖像,并觀察各族函數(shù)圖像,探求他們之間的關(guān)系。
y=2x;y=log2x y=( )x,y=log x
合作探究2:當(dāng)a>0,a≠ 1,函數(shù)y=ax與y=logax圖像之間有什么關(guān)系?
設(shè)計意圖
在這兒體現(xiàn)“從特殊到一般”、“從具體到抽象”的方法。
合作探究3:分析你所畫的兩組函數(shù)的圖像,對照指數(shù)函數(shù)的性質(zhì),總結(jié)歸納對數(shù)函數(shù)的性質(zhì)。
設(shè)計意圖
學(xué)生討論并交流各自的而發(fā)現(xiàn)成果,教師結(jié)合學(xué)生的交流,適時歸納總結(jié),并板書對數(shù)函數(shù)的性質(zhì))。問題1:對數(shù)函數(shù)y=logax( a>0,a≠1,)是否具有奇偶性,為什么?
問題2:對數(shù)函數(shù)y=logax( a>0,a≠1,),當(dāng)a>1時,x取何值,y>0,x取何值,y<0,當(dāng)0 問題3:對數(shù)式logab的值的符號與a,b的取值之間有何關(guān)系? 知識拓展:函數(shù)y=ax稱為y=logax的反函數(shù),反之,也成立,一般地,如果函數(shù)y=f(x)存在反函數(shù),那么它的反函數(shù)記作y=f-1(x)。 3、自我嘗試,初步應(yīng)用。 例1:求下列函數(shù)的定義域 y=log0.2(4-x)(該題主要考查對函數(shù)y=logax的定義域(0,+∞)這一限制條件,根據(jù)函數(shù)的解析式求得不等式,解對應(yīng)的不等式。) 例2:利用對數(shù)函數(shù)的性質(zhì),比較下列各組數(shù)中兩個數(shù)的大。 (1)、㏒2 3.4,log2 3.8; 。2)、log0.5 1.8,log0.5 2.1; 。3)、log7 5,log6 7 。ㄔ谶@兒要求學(xué)生通過回顧指數(shù)函數(shù)的有關(guān)性質(zhì)比較大小的步驟和方法,完成完成前兩題,最后一題可以通過教師的適當(dāng)點撥完成解答,最后進行歸納總結(jié)比較數(shù)的大小常用的方法) 合作探究4:已知logm 4 設(shè)計意圖 該題不僅運用了對數(shù)函數(shù)的圖像和性質(zhì),還培養(yǎng)了學(xué)生數(shù)形結(jié)合、分類討論等數(shù)學(xué)思想。 4、當(dāng)堂訓(xùn)練,鞏固深化。 通過學(xué)生的主體性參與,使學(xué)生深刻體會到本節(jié)課的主要內(nèi)容和思想方法,從而實現(xiàn)對知識的再次深化。 采用課后習(xí)題1,2,3. 5、小結(jié)歸納,回顧反思。 小結(jié)歸納不僅是對知識的簡單回顧,還要發(fā)揮學(xué)生的主體地位,從知識、方法、經(jīng)驗等方面進行總結(jié)。 (1)、小結(jié): 、賹(shù)函數(shù)的概念 、趯(shù)函數(shù)的圖像和性質(zhì) 、劾脤(shù)函數(shù)的性質(zhì)比較大小的一般方法和步驟, (2)、反思 我設(shè)計了三個問題 ①、通過本節(jié)課的學(xué)習(xí),你學(xué)到了哪些知識? ②、通過本節(jié)課的學(xué)習(xí),你最大的體驗是什么? 、、通過本節(jié)課的學(xué)習(xí),你掌握了哪些技能? (二)、作業(yè)設(shè)計 作業(yè)分為必做題和選做題,必做題是對本節(jié)課學(xué)生知識水平的反饋,選做題是對本節(jié)課內(nèi)容的延伸與連貫,強調(diào)學(xué)以致用。通過作業(yè)設(shè)置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,促進學(xué)生的自主發(fā)展、合作探究的學(xué)習(xí)氛圍的形成。 我設(shè)計了以下作業(yè): 必做題:課后習(xí)題A 1,2,3; 選做題:課后習(xí)題B 1,2,3; (三)、板書設(shè)計 板書要基本體現(xiàn)課堂的內(nèi)容和方法,體現(xiàn)課堂進程,能簡明扼要反映知識結(jié)構(gòu)及其相互關(guān)系:能指導(dǎo)教師的教學(xué)進程、引導(dǎo)學(xué)生探索知識;通過使用幻燈片輔助板書,節(jié)省課堂時間,使課堂進程更加連貫。 五、評價分析 學(xué)生學(xué)習(xí)的結(jié)果評價固然重要,但是更重要的是學(xué)生學(xué)習(xí)的過程評價。我采用了及時點評、延時點評與學(xué)生互評相結(jié)合,全面考查學(xué)生在知識、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過程中,評價學(xué)生是否有積極的情感態(tài)度和頑強的理性精神,在概念反思過程中評價學(xué)生的歸納猜想能力是否得到發(fā)展,通過鞏固練習(xí)考查學(xué)生對本節(jié)是否有一個完整的集訓(xùn),并進行及時的調(diào)整和補充。 以上就是我對本節(jié)課的理解和設(shè)計,敬請各位專家、評委批評指正。 謝謝! 一、教材分析 1、教學(xué)內(nèi)容 本節(jié)課內(nèi)容教材共分兩課時進行,這是第一課時,該課時主要學(xué)習(xí)函數(shù)的單調(diào)性的的概念,依據(jù)函數(shù)圖象判斷函數(shù)的單調(diào)性和應(yīng)用定義證明函數(shù)的單調(diào)性。 2、教材的地位和作用 函數(shù)單調(diào)性是高中數(shù)學(xué)中相當(dāng)重要的一個基礎(chǔ)知識點,是研究和討論初等函數(shù)有關(guān)性質(zhì)的基礎(chǔ)。掌握本節(jié)內(nèi)容不僅為今后的函數(shù)學(xué)習(xí)打下理論基礎(chǔ),還有利于培養(yǎng)學(xué)生的抽象思維能力,及分析問題和解決問題的能力。 3、教材的重點﹑難點﹑關(guān)鍵 教學(xué)重點:函數(shù)單調(diào)性的概念和判斷某些函數(shù)單調(diào)性的方法。明確單調(diào)性是一個局部概念。 教學(xué)難點:領(lǐng)會函數(shù)單調(diào)性的實質(zhì)與應(yīng)用,明確單調(diào)性是一個局部的概念。 教學(xué)關(guān)鍵:從學(xué)生的學(xué)習(xí)心理和認知結(jié)構(gòu)出發(fā),講清楚概念的形成過程、 4、學(xué)情分析 高一學(xué)生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過渡到理性思維,并由此向邏輯思維發(fā)展,但學(xué)生思維不成熟、不嚴(yán)密、意志力薄弱,故而整個教學(xué)環(huán)節(jié)總是創(chuàng)設(shè)恰當(dāng)?shù)膯栴}情境,引導(dǎo)學(xué)生積極思考,培養(yǎng)他們的邏輯思維能力。從學(xué)生的認知結(jié)構(gòu)來看,他們只能根據(jù)函數(shù)的圖象觀察出“隨著自變量的增大函數(shù)值增大”等變化趨勢,所以在教學(xué)中要充分利用好函數(shù)圖象的直觀性,發(fā)揮好多媒體教學(xué)的優(yōu)勢;由于學(xué)生在概念的掌握上缺少系統(tǒng)性、嚴(yán)謹性,在教學(xué)中注意加強。 二、目標(biāo)分析 。ㄒ唬┲R目標(biāo): 1、知識目標(biāo):理解函數(shù)單調(diào)性的概念,掌握判斷一些簡單函數(shù)的單調(diào)性的方法;了解函數(shù)單調(diào)區(qū)間的概念,并能根據(jù)函數(shù)圖象說出函數(shù)的單調(diào)區(qū)間。 2、能力目標(biāo):通過證明函數(shù)的單調(diào)性的學(xué)習(xí),使學(xué)生體驗和理解從特殊到一般的數(shù)學(xué)歸納推理思維方式,培養(yǎng)學(xué)生的觀察能力,分析歸納能力,領(lǐng)會數(shù)學(xué)的歸納轉(zhuǎn)化的思想方法,增加學(xué)生的知識聯(lián)系,增強學(xué)生對知識的主動構(gòu)建的能力。 3、情感目標(biāo):讓學(xué)生積極參與觀察、分析、探索等課堂教學(xué)的雙邊活動,在掌握知識的過程中體會成功的喜悅,以此激發(fā)求知欲望。領(lǐng)會用運動變化的觀點去觀察分析事物的方法。通過滲透數(shù)形結(jié)合的數(shù)學(xué)思想,對學(xué)生進行辨證唯物主義的思想教育。 。ǘ┻^程與方法 培養(yǎng)學(xué)生嚴(yán)密的邏輯思維能力以及用運動變化、數(shù)形結(jié)合、分類討論的方法去分析和處理問題,以提高學(xué)生的思維品質(zhì),通過函數(shù)的單調(diào)性的學(xué)習(xí),掌握自變量和因變量的關(guān)系。通過多媒體手段激發(fā)學(xué)生學(xué)習(xí)興趣,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題和解題的邏輯推理能力。 三、教法與學(xué)法 1、教學(xué)方法 在教學(xué)中,要注重展開探索過程,充分利用好函數(shù)圖象的直觀性、發(fā)揮多媒體教學(xué)的優(yōu)勢。本節(jié)課采用問答式教學(xué)法、探究式教學(xué)法進行教學(xué),教師在課堂中只起著主導(dǎo)作用,讓學(xué)生在教師的提問中自覺的發(fā)現(xiàn)新知,探究新知,并且加入激勵性的語言以提高學(xué)生的積極性,提高學(xué)生參與知識形成的全過程。 2、學(xué)習(xí)方法 自我探索、自我思考總結(jié)、歸納,自我感悟,合作交流,成為本節(jié)課學(xué)生學(xué)習(xí)的主要方式。 四、過程分析 本節(jié)課的教學(xué)過程包括:問題情景,函數(shù)單調(diào)性的定義引入,增函數(shù)、減函數(shù)的定義,例題分析與鞏固練習(xí),回顧總結(jié)和課外作業(yè)六個板塊。這里分別就其過程和設(shè)計意圖作一一分析。 。ㄒ唬﹩栴}情景: 為了激發(fā)學(xué)生的學(xué)習(xí)興趣,本節(jié)課借助多媒體設(shè)計了多個生活背景問題,并就圖表和圖象所提供的信息,提出一系列問題和學(xué)生交流,激發(fā)學(xué)生的學(xué)習(xí)興趣和求知欲望,為學(xué)習(xí)函數(shù)的單調(diào)性做好鋪墊。(祥見課件) 新課程理念認為:情境應(yīng)貫穿課堂教學(xué)的始終。本節(jié)課所創(chuàng)設(shè)的生活情境,讓學(xué)生親近數(shù)學(xué),感受到數(shù)學(xué)就在他們的周圍,強化學(xué)生的感性認識,從而達到學(xué)生對數(shù)學(xué)的理解。讓學(xué)生在課堂的一開始就感受到數(shù)學(xué)就在我們身邊,讓學(xué)生學(xué)會用數(shù)學(xué)的眼光去關(guān)注生活。 。ǘ┖瘮(shù)單調(diào)性的定義引入 1、幾何畫板動畫演示,請學(xué)生認真觀察,并回答問題:通過學(xué)生已學(xué)過的函數(shù)y=2x+4,,的圖象的動態(tài)形式形象出x、y間的變化關(guān)系,使學(xué)生對函數(shù)單調(diào)性有感性認識。,進行比較,分析其變化趨勢。并探討、回答以下問題: 問題1、觀察下列函數(shù)圖象,從左向右看圖象的變化趨勢? 問題2:你能明確說出“圖象呈上升趨勢”的意思嗎? 通過學(xué)生的交流、探討、總結(jié),得到單調(diào)性的“通俗定義”: 從在某一區(qū)間內(nèi)當(dāng)x的值增大時,函數(shù)值y也增大,到圖象在該區(qū)間內(nèi)呈上升趨勢再到如何用x與f(x)來描述上升的圖象? 通過問題逐步向抽象的定義靠攏,將圖形語言轉(zhuǎn)化為數(shù)學(xué)符號語言。幾何畫板的靈活使用,數(shù)形有機結(jié)合,引導(dǎo)學(xué)生從圖形語言到數(shù)學(xué)符號語言的翻譯變得輕松。 設(shè)計意圖: 、偻ㄟ^學(xué)生熟悉的知識引入新課題,有利于激發(fā)學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)熱情,同時也可以培養(yǎng)學(xué)生觀察、猜想、歸納的思維能力和創(chuàng)新意識,增強學(xué)生自主學(xué)習(xí)、獨立思考,由學(xué)會向會學(xué)的轉(zhuǎn)化,形成良好的思維品質(zhì)。 ②通過學(xué)生已學(xué)過的一次y=2x+4,,的圖象的動態(tài)形式形象地反映出x、y間的變化關(guān)系,使學(xué)生對函數(shù)單調(diào)性有感性認識。 、蹚膶W(xué)生的原有認知結(jié)構(gòu)入手,探討單調(diào)性的概念,符合“最近發(fā)展區(qū)的理論”要求。 、軓膱D形、直觀認識入手,研究單調(diào)性的概念,其本身就是研究、學(xué)習(xí)數(shù)學(xué)的一種方法,符合新課程的理念。 。ㄈ┰龊瘮(shù)、減函數(shù)的定義 在前面的基礎(chǔ)上,讓學(xué)生討論歸納:如何使用數(shù)學(xué)語言來準(zhǔn)確描述函數(shù)的單調(diào)性?在學(xué)生回答的基礎(chǔ)上,給出增函數(shù)的概念,同時要求學(xué)生討論概念中的關(guān)鍵詞和注意點。 定義中的“當(dāng)x1x2時,都有f(x1) 注意: 。1)函數(shù)的單調(diào)性也叫函數(shù)的增減性; (2)注意區(qū)間上所取兩點x1,x2的任意性; 。3)函數(shù)的單調(diào)性是對某個區(qū)間而言的,它是一個局部概念。 讓學(xué)生自已嘗試寫出減函數(shù)概念,由兩名學(xué)生板演。提出單調(diào)區(qū)間的概念。 設(shè)計意圖:通過給出函數(shù)單調(diào)性的嚴(yán)格定義,目的是為了讓學(xué)生更準(zhǔn)確地把握概念,理解函數(shù)的單調(diào)性其實也叫做函數(shù)的增減性,它是對某個區(qū)間而言的,它是一個局部概念,同時明確判定函數(shù)在某個區(qū)間上的單調(diào)性的一般步驟。這樣處 理,同時也是讓學(xué)生感悟、體驗學(xué)習(xí)數(shù)學(xué)感念的方法,提高其個性品質(zhì)。 。ㄋ模├}分析 在理解概念的基礎(chǔ)上,讓學(xué)生總結(jié)判別函數(shù)單調(diào)性的方法:圖象法和定義法。 2、例2、證明函數(shù)在區(qū)間(—∞,+∞)上是減函數(shù)。 在本題的解決過程中,要求學(xué)生對照定義進行分析,明確本題要解決什么?定義要求是什么?怎樣去思考?通過自己的解決,總結(jié)證明單調(diào)性問題的一般方法。 變式一:函數(shù)f(x)=—3x+b在R上是減函數(shù)嗎?為什么? 變式二:函數(shù)f(x)=kx+b(k<0)在R上是減函數(shù)嗎?你能用幾種方法來判斷。 變式三:函數(shù)f(x)=kx+b(k<0)在R上是減函數(shù)嗎?你能用幾種方法來判斷。 錯誤:實質(zhì)上并沒有證明,而是使用了所要證明的結(jié)論 例題設(shè)計意圖:在理解概念的基礎(chǔ)上,讓學(xué)生總結(jié)判別函數(shù)單調(diào)性的方法:圖象法和定義法。例1是教材中例題,它的解決強化學(xué)生應(yīng)用數(shù)形結(jié)合的思想方法解題的意識,進一步加深對概念的理解,同時也是依托具體問題,對單調(diào)區(qū)間這一概念的再認識;要了解函數(shù)在某一區(qū)間上是否具有單調(diào)性,從圖上進行觀察是一種常用而又粗略的方法。嚴(yán)格地說,它需要根據(jù)單調(diào)函數(shù)的定義進行證明。例2是教材練習(xí)題改編,通過師生共同總結(jié),得出使用定義證明的一般步驟:任取—作差(變形)—定號—下結(jié)論,通過例2的解決是學(xué)生初步掌握運用概念進行簡單論證的基本方法,強化證題的規(guī)范性訓(xùn)練,從而提高學(xué)生的推理論證能力。例3是教材例2抽象出的數(shù)學(xué)問題。目的是進一步強化解題的規(guī)范性,提高邏輯推理能力,同時讓學(xué)生學(xué)會一些常見的變形方法。 。ㄎ澹╈柟膛c探究 1、教材p36練習(xí)2,3 2、探究:二次函數(shù)的單調(diào)性有什么規(guī)律? (幾何畫板演示,學(xué)生探究)本問題作為機動題。時間不允許時,就為課后思考題。 設(shè)計意圖:通過觀察圖象,對函數(shù)是否具有某種性質(zhì)作出一種猜想,然后通過推理的辦法,證明這種猜想的正確性,是發(fā)現(xiàn)和解決問題的一種常用數(shù)學(xué)方法。 通過課堂練習(xí)加深學(xué)生對概念的理解,進一步熟悉證明或判斷函數(shù)單調(diào)性的方法和步驟,達到鞏固,消化新知的目的。同時強化解題步驟,形成并提高解題能力。對練習(xí)的思考,讓學(xué)生學(xué)會反思、學(xué)會總結(jié)。 。┗仡櫩偨Y(jié) 通過師生互動,回顧本節(jié)課的概念、方法。本節(jié)課我們學(xué)習(xí)了函數(shù)單調(diào)性的知識,同學(xué)們要切記:單調(diào)性是對某個區(qū)間而言的,同時在理解定義的基礎(chǔ)上,要掌握證明函數(shù)單調(diào)性的方法步驟,正確進行判斷和證明。 設(shè)計意圖:通過小結(jié)突出本節(jié)課的重點,并讓學(xué)生對所學(xué)知識的結(jié)構(gòu)有一個清晰的認識,學(xué)會一些解決問題的思想與方法,體會數(shù)學(xué)的和諧美。 。ㄆ撸┱n外作業(yè) 1、教材p43習(xí)題1。3A組1(單調(diào)區(qū)間),2(證明單調(diào)性); 2、判斷并證明函數(shù)在上的單調(diào)性。 3、數(shù)學(xué)日記:談?wù)勀惚竟?jié)課中的收獲或者困惑,整理你認為本節(jié)課中的最重要的知識和方法。 設(shè)計意圖:通過作業(yè)1、2進一步鞏固本節(jié)課所學(xué)的增、減函數(shù)的概念,強化基本技能訓(xùn)練和解題規(guī)范化的訓(xùn)練,并且以此作為學(xué)生對本結(jié)內(nèi)容各項目標(biāo)落實的評價。新課標(biāo)要求:不同的學(xué)生學(xué)習(xí)不同的數(shù)學(xué),在數(shù)學(xué)上獲得不同的發(fā)展。作業(yè)3這種新型的作業(yè)形式是其很好的體現(xiàn)。 。ㄆ撸┌鍟O(shè)計(見ppt) 五、評價分析 有效的概念教學(xué)是建立在學(xué)生已有知識結(jié)構(gòu)基礎(chǔ)上,,因此在教學(xué)設(shè)計過程中注意了: 第一、教要按照學(xué)的法子來教; 第二、在學(xué)生已有知識結(jié)構(gòu)和新概念間尋找“最近發(fā)展區(qū)”; 第三、強化了重探究、重交流、重過程的課改理念。讓學(xué)生經(jīng)歷“創(chuàng)設(shè)情境——探究概念——注重反思——拓展應(yīng)用——歸納總結(jié)”的活動過程,體驗了參與數(shù)學(xué)知識的發(fā)生、發(fā)展過程,培養(yǎng)“用數(shù)學(xué)”的意識和能力,成為積極主動的建構(gòu)者。 本節(jié)課圍繞教學(xué)重點,針對教學(xué)目標(biāo),以多媒體技術(shù)為依托,展現(xiàn)知識的發(fā)生和形成過程,使學(xué)生始終處于問題探索研究狀態(tài)之中,激情引趣,并注重數(shù)學(xué)科學(xué)研究方法的學(xué)習(xí),是順應(yīng)新課改要求的,是研究性教學(xué)的一次有益嘗試。 1.教材分析 1-1教學(xué)內(nèi)容及包含的知識點 (1)本課內(nèi)容是高中數(shù)學(xué)第二冊第七章第三節(jié)《兩條直線的位置關(guān)系》的最后一個內(nèi)容 (2)包含知識點:點到直線的距離公式和兩平行線的距離公式 1-2教材所處地位、作用和前后聯(lián)系 本節(jié)課是兩條直線位置關(guān)系的最后一個內(nèi)容,在此之前,有對兩線位置關(guān)系的定性刻畫:平行、垂直,以及對相交兩線的定量刻畫:夾角、交點。在此之后,有圓錐曲線方程,因而本節(jié)既是對前面兩線垂直、兩線交點的復(fù)習(xí),又是為后面計算點線距離(在直線和圓錐曲線構(gòu)成的組合圖形中)提供一套工具。 可見,本課有承前啟后的作用。 1-3教學(xué)大綱要求 掌握點到直線的距離公式 1-4高考大綱要求及在高考中的顯示形式 掌握點到直線的距離公式。在近年的高考中,通常以直線和圓錐曲線構(gòu)成的組合圖形為背景,判斷直線和圓錐曲線的位置或構(gòu)成三角形求高,涉及絕對值,直線垂直,最小值等。 1-5教學(xué)目標(biāo)及確定依據(jù) 教學(xué)目標(biāo) (1)掌握點到直線的距離的概念、公式及公式的推導(dǎo)過程,能用公式來求點線距離和線線距離。 (2)培養(yǎng)學(xué)生探究性思維方法和由特殊到一般的研究能力。 (3)認識事物之間相互聯(lián)系、互相轉(zhuǎn)化的辯證法思想,培養(yǎng)學(xué)生轉(zhuǎn)化知識的能力。 (4)滲透人文精神,既注重學(xué)生的智慧獲得,又注重學(xué)生的情感發(fā)展。 確定依據(jù): 中華人民共和國教育部制定的《全日制普通高級中學(xué)數(shù)學(xué)教學(xué)大綱》(20xx年4月第一版),《基礎(chǔ)教育課程改革綱要(試行)》,《高考考試說明》(20xx年) 1-6教學(xué)重點、難點、關(guān)鍵 (1)重點:點到直線的距離公式 確定依據(jù):由本節(jié)在教材中的地位確定 。2)難點:點到直線的距離公式的推導(dǎo) 確定依據(jù):根據(jù)定義進行推導(dǎo),思路自然,但運算繁瑣;用等積法推導(dǎo),運算較簡單,但思路不自然,學(xué)生易被動,主體性得不到體現(xiàn)。 分析“嘗試性題組”解題思路可突破難點 。3)關(guān)鍵:實現(xiàn)兩個轉(zhuǎn)化。一是將點線距離轉(zhuǎn)化為定點到垂足的距離;二是利用等積法將其轉(zhuǎn)化為直角三角形中三頂點的距離。 2.教法 2-1發(fā)現(xiàn)法:本節(jié)課為了培養(yǎng)學(xué)生探究性思維目標(biāo),在教學(xué)過程中,使老師的主導(dǎo)性和學(xué)生的主體性有機結(jié)合,使學(xué)生能夠愉快地自覺學(xué)習(xí),通過學(xué)生自己練習(xí)“嘗試性題組”,引導(dǎo)、啟發(fā)學(xué)生分析、發(fā)現(xiàn)、比較、論證等,從而形成完整的數(shù)學(xué)模型。 確定依據(jù): (1)美國教育學(xué)家波利亞的教與學(xué)三原則:主動學(xué)習(xí)原則,最佳動機原則,階段漸進性原則。 (2)事物之間相互聯(lián)系,相互轉(zhuǎn)化的辯證法思想。 2-2教具:多媒體和黑板等傳統(tǒng)教具 3.學(xué)法 3-1發(fā)現(xiàn)法:豐富學(xué)生的數(shù)學(xué)活動,學(xué)生經(jīng)過練習(xí)、觀察、分析、探索等步驟,自己發(fā)現(xiàn)解決問題的方法,比較論證后得到一般性結(jié)論,形成完整的數(shù)學(xué)模型,再運用所得理論和方法去解決問題。 一句話:還課堂以生命力,還學(xué)生以活力。 3-2學(xué)情: 。1)知識能力狀況,本節(jié)為兩線位置關(guān)系的最后一個內(nèi)容,在這之前學(xué)生已經(jīng)系統(tǒng)的學(xué)習(xí)了直線方程的各種形式,有對兩線位置關(guān)系的定性認識和對兩線相交的定量認識,為本節(jié)推證公式涉及到直線方程、兩線垂直、兩線交點作好了知識儲備。同時學(xué)生對解析幾何的實質(zhì)中,用坐標(biāo)系溝通直線與方程的研究辦法,有了初步認識,數(shù)形結(jié)合的思想正逐漸趨于成熟。 。2)心理特點:又見“點到直線的距離”(初中已學(xué)習(xí)定義),學(xué)生既熟悉又陌生,既困惑又好奇,探詢動機由此而生。 。3)生活經(jīng)驗:數(shù)學(xué)源于生活,生活中的點線距隨處可見,怎樣將實際問題數(shù)學(xué)化,是每個追求成長、追求發(fā)展的學(xué)生所渴求的一種研究能力。豐富的課堂數(shù)學(xué)活動能夠讓他們真正參與,體驗過程,錘煉意志,培養(yǎng)能力。 3-3學(xué)具:直尺、三角板 3. 教學(xué)程序 時,此時又怎樣求點A到直線 的距離呢? 生: 定性回答 點明課題,使學(xué)生明確學(xué)習(xí)目標(biāo)。 創(chuàng)設(shè)“不憤不啟,不悱不發(fā)”的學(xué)習(xí)情景。 練習(xí) 比較 發(fā)現(xiàn) 歸納 討論 的距離為d (1) A(2,4), 。簒 = 3, d=_____ (2) A(2,4), 。簓 = 3,d=_____ (3) A(2,4), :x – y = 0,d=_____ 嘗試性題組告訴學(xué)生下手不難,還負責(zé)特例檢驗,從而增強學(xué)生參與的信心。 請三個同學(xué)上黑板板演 師: 請這三位同學(xué)分別說說自己的解題思路。 生: 回答 教學(xué)機智:應(yīng)沉淀為三種思路:一,根據(jù)定義轉(zhuǎn)化為定點到垂足的距離;二,利用等積法轉(zhuǎn)化為直角三角形中三個頂點之間的距離;三,利用直角三角形中的邊角關(guān)系。 視回答的情況,老師進行肯定、修正或補充提問:“還有其他不同的思路嗎”。 說解題思路,一是讓學(xué)生清晰有條理的表達自己的思考過程,二是其求解過程提示了證明的途徑(根據(jù)定義或畫坐標(biāo)線時正好交出一個直角三角形) 師:很好,剛才我們解決了定點到特殊直線的距離問題,那么,點P(x0,y0)到一般直線 :Ax+By+C=0(A,B≠0)的距離又怎樣求? 教學(xué)機智:如學(xué)生反應(yīng)不大,則補充提問:上面三個題的解題思路對這個問題有啟示嗎? 生:方案一:根據(jù)定義 方案二:根據(jù)等積法 方案三: ...... 設(shè)置此問,一是使學(xué)生的認知由特殊向一般轉(zhuǎn)化,發(fā)現(xiàn)可能的方法,二是讓學(xué)生體驗數(shù)學(xué)活動充滿著探索和創(chuàng)造,感受數(shù)學(xué)的生機和樂趣。 師生一起進行比較,鎖定方案二進行推證。 “師生共作”體現(xiàn)新型師生觀,且//時,又怎樣求這兩線的距離? 生:計算得線線距離公式 師:板書點到直線的距離公式,兩平行線間距離公式 “沒有新知識,新知識均是舊知識的組合”,創(chuàng)設(shè)此問可發(fā)揮學(xué)生的創(chuàng)造性,增加學(xué)生的成就感。 反思小結(jié) 經(jīng)驗共享 。 分 鐘) 師: 通過以上的學(xué)習(xí),你有哪些收獲?(知識,能力,情感)。有哪些疑問?誰能答這些疑問? 生: 討論,回答。 對本節(jié)課用到的技能,數(shù)學(xué)思維方法等進行小結(jié),使學(xué)生對本節(jié)知識有一個整體的認識。 共同進步,各取所長。 練習(xí) (五 分 鐘) P53 練習(xí) 1, 2,3 熟練的用公式來求點線距離和線線距離。 再度延伸 。ㄒ 分 鐘) 探索其他推導(dǎo)方法 “帶著問題進課堂,帶著更多的問題出課堂”,讓學(xué)生真正學(xué)會學(xué)習(xí)。 4. 教學(xué)評價 學(xué)生完成反思性學(xué)習(xí)報告,書寫要求: (1) 整理知識結(jié)構(gòu) (2) 總結(jié)所學(xué)到的基本知識,技能和數(shù)學(xué)思想方法 (3) 總結(jié)在學(xué)習(xí)過程中的經(jīng)驗,發(fā)明發(fā)現(xiàn),學(xué)習(xí)障礙等,說明產(chǎn)生障礙的原因 (4) 談?wù)勀銓蠋熃谭ǖ慕ㄗh和要求。 作用: (1) 通過反思使學(xué)生對所學(xué)知識系統(tǒng)化。反思的過程實際上是學(xué)生思維內(nèi)化,知識深化和認知牢固化的一個心理活動過程。 (2) 報告的寫作本身就是一種創(chuàng)造性活動。 (3) 及時了解學(xué)生學(xué)習(xí)過程中的知識缺陷,思維障礙,有利于教師了解學(xué)生對自己的教法的滿意度和效果,以便作出及時調(diào)整,及時進行補償性教學(xué)。 5. 板書設(shè)計 (略) 6. 教學(xué)的反思總結(jié) 心理歷練,得意之處,困惑之處,知識的傳承發(fā)展,如何修正完善等。 一、說教材: 1、地位、作用和特點: 《 》是高中數(shù)學(xué)課本第 冊( 修)的第 章“ ”的第 節(jié)內(nèi)容,高中數(shù)學(xué)課本說課稿。 本節(jié)是在學(xué)習(xí)了 之后編排的。通過本節(jié)課的學(xué)習(xí),既可以對 的知識進一步鞏固和深化,又可以為后面學(xué)習(xí) 打下基礎(chǔ),所以 是本章的重要內(nèi)容。此外,《 》的知識與我們?nèi)粘I睢⑸a(chǎn)、科學(xué)研究 有著密切的聯(lián)系,因此學(xué)習(xí)這部分有著廣泛的現(xiàn)實意義。本節(jié)的特點之一是; 特點之二是: 。 教學(xué)目標(biāo): 根據(jù)《教學(xué)大綱》的要求和學(xué)生已有的知識基礎(chǔ)和認知能力,確定以下教學(xué)目標(biāo): 。1)知識目標(biāo):A、B、C 。2)能力目標(biāo):A、B、C 。3)德育目標(biāo):A、B 教學(xué)的重點和難點: 。1)教學(xué)重點: (2)教學(xué)難點: 二、說教法: 基于上面的教材分析,我根據(jù)自己對研究性學(xué)習(xí)“啟發(fā)式”教學(xué)模式和新課程改革的理論認識,結(jié)合本校學(xué)生實際,主要突出了幾個方面:一是創(chuàng)設(shè)問題情景,充分調(diào)動學(xué)生求知欲,并以此來激發(fā)學(xué)生的探究心理。二是運用啟發(fā)式教學(xué)方法,就是把教和學(xué)的各種方法綜合起來統(tǒng)一組織運用于教學(xué)過程,以求獲得最佳效果。另外還注意獲得和交換信息渠道的綜合、教學(xué)手段的綜合和課堂內(nèi)外的綜合。并且在整個教學(xué)設(shè)計盡量做到注意學(xué)生的心理特點和認知規(guī)律,觸發(fā)學(xué)生的思維,使教學(xué)過程真正成為學(xué)生的學(xué)習(xí)過程,以思維教學(xué)代替單純的記憶教學(xué)。三是注重滲透數(shù)學(xué)思考方法(聯(lián)想法、類比法、數(shù)形結(jié)合等一般科學(xué)方法)。讓學(xué)生在探索學(xué)習(xí)知識的過程中,領(lǐng)會常見數(shù)學(xué)思想方法,培養(yǎng)學(xué)生的探索能力和創(chuàng)造性素質(zhì)。四是注意在探究問題時留給學(xué)生充分的時間,以利于開放學(xué)生的思維。當(dāng)然這就應(yīng)在處理教學(xué)內(nèi)容時能夠做到葉老師所說“教就是為了不教”。因此,擬對本節(jié)課設(shè)計如下教學(xué)程序: 導(dǎo)入新課 新課教學(xué) 反饋發(fā)展 三、說學(xué)法: 學(xué)生學(xué)習(xí)的過程實際上就是學(xué)生主動獲取、整理、貯存、運用知識和獲得學(xué)習(xí)能力的過程,因此,我覺得在教學(xué)中,指導(dǎo)學(xué)生學(xué)習(xí)時,應(yīng)盡量避免單純地、直露地向?qū)W生灌輸某種學(xué)習(xí)方法。有效的能被學(xué)生接受的學(xué)法指導(dǎo)應(yīng)是滲透在教學(xué)過程中進行的,是通過優(yōu)化教學(xué)程序來增強學(xué)法指導(dǎo)的目的性和實效性。在本節(jié)課的教學(xué)中主要滲透以下幾個方面的學(xué)法指導(dǎo)。 1、培養(yǎng)學(xué)生學(xué)會通過自學(xué)、觀察、實驗等方法獲取相關(guān)知識,使學(xué)生在探索研究過程中分析、歸納、推理能力得到提高。 本節(jié)教師通過列舉具體事例來進行分析,歸納出 ,并依 據(jù)此知識與具體事例結(jié)合、推導(dǎo)出 ,這正是一個分析和推理的全過程。 2、讓學(xué)生親自經(jīng)歷運用科學(xué)方法探索的過程。 主要是努力創(chuàng)設(shè)應(yīng)用科學(xué)方法探索、解決問題情境,讓學(xué)生在探索中體會科學(xué)方法,如在講授 時,可通過 演示,創(chuàng)設(shè)探索 規(guī)律的情境,引導(dǎo)學(xué)生以可靠的事實為基礎(chǔ),經(jīng)過抽象思維揭示內(nèi)在規(guī)律,從而使學(xué)生領(lǐng)悟到把可靠的事實和深刻的理論思維結(jié)合起來的特點。 3、讓學(xué)生在探索性實驗中自己摸索方法,觀察和分析現(xiàn)象,從而發(fā)現(xiàn)“新”的問題或探索出“新”的規(guī)律。從而培養(yǎng)學(xué)生的發(fā)散思維和收斂思維能力,激發(fā)學(xué)生的創(chuàng)造動力。在實踐中要盡可能讓學(xué)生多動腦、多動手、多觀察、多交流、多分析;老師要給學(xué)生多點撥、多啟發(fā)、多激勵,不斷地尋找學(xué)生思維和操作上的閃光點,及時總結(jié)和推廣。 4、在指導(dǎo)學(xué)生解決問題時,引導(dǎo)學(xué)生通過比較、猜測、嘗試、質(zhì)疑、發(fā)現(xiàn)等探究環(huán)節(jié)選擇合適的概念、規(guī)律和解決問題方法,從而克服思維定勢的消極影響,促進知識的正向遷移。如教師引導(dǎo)學(xué)生對比中,蘊含的本質(zhì)差異,從而擺脫知識遷移的負面影響。這樣,既有利于學(xué)生養(yǎng)成認真分析過程、善于比較的好習(xí)慣,又有利于培養(yǎng)學(xué)生通過現(xiàn)象發(fā)掘知識內(nèi)在本質(zhì)的能力。 四、教學(xué)過程: 。ㄒ唬⒄n題引入: 教師創(chuàng)設(shè)問題情景(創(chuàng)設(shè)情景:A、教師演示實驗。B、使用多媒體模擬一些比較有趣、與生活實踐比較有關(guān)的事例,教案《高中數(shù)學(xué)課本說課稿》。C、講述數(shù)學(xué)科學(xué)史上的有關(guān)情況。)激發(fā)學(xué)生的探究欲望,引導(dǎo)學(xué)生提出接下去要研究的問題。 。ǘ、新課教學(xué): 1、針對上面提出的問題,設(shè)計學(xué)生動手實踐,讓學(xué)生通過動手探索有關(guān)的知識,并引導(dǎo)學(xué)生進行交流、討論得出新知,并進一步提出下面的問題。 2、組織學(xué)生進行新問題的實驗方法設(shè)計—這時在設(shè)計上最好是有對比性、數(shù)學(xué)方法性的設(shè)計實驗,指導(dǎo)學(xué)生實驗、通過多媒體的輔助,顯示學(xué)生的實驗數(shù)據(jù),模擬強化出實驗情況,由學(xué)生分析比較,歸納總結(jié)出知識的結(jié)構(gòu)。 。ㄈ嵤┓答仯 1、課堂反饋,遷移知識(最好遷移到與生活有關(guān)的例子)。讓學(xué)生分析有關(guān)的問題,實現(xiàn)知識的升華、實現(xiàn)學(xué)生的再次創(chuàng)新。 2、課后反饋,延續(xù)創(chuàng)新。通過課后練習(xí),學(xué)生互改作業(yè),課后研實驗,實現(xiàn)課堂內(nèi)外的綜合,實現(xiàn)創(chuàng)新精神的延續(xù)。 五、板書設(shè)計: 在教學(xué)中我把黑板分為三部分,把知識要點寫在左側(cè),中間知識推導(dǎo)過程,右邊實例應(yīng)用。 六、說課綜述: 以上是我對《 》這節(jié)教材的認識和對教學(xué)過程的設(shè)計。在整個課堂中,我引導(dǎo)學(xué)生回顧前面學(xué)過的 知識,并把它運用到對 的認識,使學(xué)生的認知活動逐步深化,既掌握了知識,又學(xué)會了方法。 總之,對課堂的設(shè)計,我始終在努力貫徹以教師為主導(dǎo),以學(xué)生為主體,以問題為基礎(chǔ),以能力、方法為主線,有計劃培養(yǎng)學(xué)生的自學(xué)能力、觀察和實踐能力、思維能力、應(yīng)用知識解決實際問題的能力和創(chuàng)造能力為指導(dǎo)思想。并且能從各種實際出發(fā),充分利用各種教學(xué)手段來激發(fā)學(xué)生的學(xué)習(xí)興趣,體現(xiàn)了對學(xué)生創(chuàng)新意識的培養(yǎng)。 一、教材分析: 1.教材所處的地位和作用: 本節(jié)內(nèi)容在全書和章節(jié)中的作用是:《1.3.1柱體、錐體、臺體的表面積》是高中數(shù)學(xué)教材數(shù)學(xué)2第一章空間幾何體3節(jié)內(nèi)容。在此之前學(xué)生已學(xué)習(xí)了空間幾何體的結(jié)構(gòu)、三視圖和直觀圖為基礎(chǔ),這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容是在空間幾何中,占據(jù)重要的地位。以及為其他學(xué)科和今后的學(xué)習(xí)打下基礎(chǔ)。 2.教育教學(xué)目標(biāo): 根據(jù)上述教材分析,考慮到學(xué)生已有的認知結(jié)構(gòu)心理特征,制定如下教學(xué)目標(biāo): 知識與能力: 。1)了解柱體、錐體、臺體的表面積. (2)能用公式求柱體、錐體、臺體的表面積。 。3)培養(yǎng)學(xué)生空間想象能力和思維能力 過程與方法: 讓學(xué)生經(jīng)歷幾何體的表面積的實際求法,感知幾何體的形狀,培養(yǎng)學(xué)生對數(shù)學(xué)問題的轉(zhuǎn)化化歸能力。 情感、態(tài)度與價值觀: 通過學(xué)習(xí),是學(xué)生感受到幾何體表面積的求解過程,激發(fā)學(xué)生探索、創(chuàng)新意識,增強學(xué)習(xí)積極性。 3.重點,難點以及確定依據(jù): 本著新課程標(biāo)準(zhǔn),在吃透教材基礎(chǔ)上,我確立了如下的教學(xué)重點、難點 教學(xué)重點:柱,錐,臺的表面積公式的推導(dǎo) 教學(xué)難點:柱,錐,臺展開圖與空間幾何體的轉(zhuǎn)化 二、教法分析 1.教學(xué)手段: 如何突出重點,突破難點,從而實現(xiàn)教學(xué)目標(biāo)。在教學(xué)過程中擬計劃進行如下操作:教學(xué)方法;诒竟(jié)課的特點:應(yīng)著重采用合作探究、小組討論的教學(xué)方法。 2.教學(xué)方法及其理論依據(jù):堅持“以學(xué)生為主體,以教師為主導(dǎo)”的原則,根據(jù)學(xué)生的心理發(fā)展規(guī)律,采用學(xué)生參與程度高的探究式討論教學(xué)法。在學(xué)生親自動手去給出各種幾何體的表面積的計算方法,特別注重不同解決問題的方法,提問不同層次的學(xué)生,面向全體,使基礎(chǔ)差的學(xué)生也能有表現(xiàn)機會,培養(yǎng)其自信心,激發(fā)其學(xué)習(xí)熱情。有效的開發(fā)各層次學(xué)生的潛在智能,力求使學(xué)生能在原有的基礎(chǔ)上得到發(fā)展。啟發(fā)學(xué)生從書本知識回到社會實踐。提供給學(xué)生與其生活和周圍世界密切相關(guān)的數(shù)學(xué)知識,學(xué)習(xí)基礎(chǔ)性的知識和技能,在教學(xué)中積極培養(yǎng)學(xué)生學(xué)習(xí)興趣和動機,明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動學(xué)生的學(xué)習(xí)積極性,激發(fā)來自學(xué)生主體的最有力的動力。 三.學(xué)情分析 我們常說:“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學(xué)習(xí)方法的人”,因而在教學(xué)中要特別重視學(xué)法的指導(dǎo)。 。1)學(xué)生特點分析:中學(xué)生心理學(xué)研究指出,高中階段是(查同中學(xué)生心發(fā)展情況)抓住學(xué)生特點,積極采用形象生動,形式多樣的教學(xué)方法和學(xué)生廣泛的積極主動參與的學(xué)習(xí)方式,定能激發(fā)學(xué)生興趣,有效地培養(yǎng)學(xué)生能力,促進學(xué)生個性發(fā)展。生理上表少年好動,注意力易分散 。2)動機和興趣上:明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動學(xué)生的學(xué)習(xí)積極性,激發(fā)來自學(xué)生主體的最有力的動力 最后我來具體談?wù)勥@一堂課的教學(xué)過程: 四、教學(xué)過程分析 。1)由一段動畫視頻引入:豐富生動的吸引學(xué)生的注意力,調(diào)動學(xué)生學(xué)習(xí)積極性 。2)由引入得出本課新的所要探討的問題——幾何體的表面積的計算。 。3)探究問題。完全將主動權(quán)教給學(xué)生,讓學(xué)生主動去探究,得到解決問題的思路,鍛煉學(xué)生動手能力,解決實際問題能力。 。4)總結(jié)結(jié)論,強化認識。知識性的內(nèi)容小結(jié),可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì),數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐步培養(yǎng)學(xué)生良好的個性品質(zhì)目標(biāo)。 。5)例題及練習(xí),見學(xué)案。 。6)布置作業(yè)。 針對學(xué)生素質(zhì)的差異進行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識,又使學(xué)有余力的學(xué)生有所提高, (7)小結(jié)。讓學(xué)生總結(jié)本節(jié)課的收獲。老師適時總結(jié)歸納。 一、說教材 1、 教材的地位和作用 《集合的概念》是人教版第一章的內(nèi)容(中職數(shù)學(xué))。本節(jié)課的主要內(nèi)容:集合以及集合有關(guān)的概念,元素與集合間的關(guān)系。初中數(shù)學(xué)課本中已現(xiàn)了一些數(shù)和點的集合,如:自然數(shù)的集合、有理數(shù)的集合、不等式解的集合等,但學(xué)生并不清楚“集合”在數(shù)學(xué)中的含義,集合是一個基礎(chǔ)性的概念,也是也是中職數(shù)學(xué)的開篇,是我們后續(xù)學(xué)習(xí)的重要工具,如:用集合的語言表示函數(shù)的定義域、值域、方程與不等式的解集,曲線上點的集合等。通過本章節(jié)的學(xué)習(xí),能讓學(xué)生領(lǐng)會到數(shù)學(xué)語言的簡潔和準(zhǔn)確性,幫助學(xué)生學(xué)會用集合的語言描述客觀,發(fā)展學(xué)生運用數(shù)學(xué)語言交流的能力。 2、 教學(xué)目標(biāo) 。1)知識目標(biāo):a、通過實例了解集合的含義,理解集合以及有關(guān)概念; b、初步體會元素與集合的“屬于”關(guān)系,掌握元素與集合關(guān)系的表示方法。 。2)能力目標(biāo):a、讓學(xué)生感知數(shù)學(xué)知識與實際生活得密切聯(lián)系,培養(yǎng)學(xué)生解決實際的能力; b、學(xué)會借助實例分析,探究數(shù)學(xué)問題,發(fā)展學(xué)生的觀察歸納能力。 。3)情感目標(biāo):a、通過聯(lián)系生活,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,形成積極的學(xué)習(xí)態(tài)度; b、通過主動探究,合作交流,感受探索的樂趣和成功的體驗,體會數(shù)學(xué)的理性和嚴(yán)謹。 3、重點和難點 重點:集合的概念,元素與集合的關(guān)系。 難點:準(zhǔn)確理解集合的概念。 二、學(xué)情分析(說學(xué)情) 對于中職生來說,學(xué)生的數(shù)學(xué)基礎(chǔ)相對薄弱,他們還沒具備一定的觀察、分析理解、解決實際問題的能力,在運算能力、思維能力等方面參差不齊,學(xué)生學(xué)好數(shù)學(xué)的自信心不強,學(xué)習(xí)積極性不高,有厭學(xué)情緒。 三、說教法 針對學(xué)生的實際情況,采用探究式教學(xué)法進行教學(xué)。首先從學(xué)生較熟悉的實例出發(fā),提高學(xué)生的注意力和激發(fā)學(xué)生的學(xué)習(xí)興趣。在創(chuàng)設(shè)情境認知策略上給予適當(dāng)?shù)狞c撥和引導(dǎo),引導(dǎo)學(xué)生主動思、交流、討論,提出問題。在此基礎(chǔ)上教師層層深入,啟發(fā)學(xué)生積極思維,逐步提升學(xué)生的數(shù)學(xué)學(xué)習(xí)能力。集合概念的形成遵循由感性到理性,由具體到抽象,便于學(xué)生的理解和掌握。 四、學(xué)習(xí)指導(dǎo)(說學(xué)法) 教學(xué)的矛盾主要方面是學(xué)生的學(xué),學(xué)是中心,會學(xué)是目的,因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí)。根據(jù)數(shù)學(xué)的特點這節(jié)課主要是教學(xué)生動腦思考、多訓(xùn)練、勤鉆研的研討,這樣做增加了學(xué)生主動參與的機會,增強了參與的意識,教學(xué)生獲取知識的途徑,思考問題的方法,使學(xué)生成為教學(xué)的主體,進而才能達到預(yù)期的教學(xué)目的和效果。 五、教學(xué)過程 1、引入新課: a、創(chuàng)設(shè)情境,揭示本課主題,同時對集合的整體性有個初步的感性認識。 b、介紹集合論的創(chuàng)始者康托爾 2、究竟什么是集合?(實例探究)切合學(xué)生現(xiàn)有的認知水平, 以學(xué)生熟悉的事物(物體),以實際生活為背景進行探究, 為本課教學(xué)創(chuàng)造出一種自然和諧的氛圍,充分調(diào)動學(xué)生的學(xué)習(xí)熱情接待探究過程學(xué)生積極思考、交流、作答,教師針對學(xué)生的回答啟發(fā),引導(dǎo)學(xué)生尋找實例中的共同特征,培養(yǎng)學(xué)生觀察,總結(jié)能力范圍由具體到抽象,由感性到理性,為下面水到渠成的介紹集合概念做好鋪墊。 3、集合的概念,本課的重點。結(jié)合探究中的實例,讓學(xué)生說出集合和元素各是什么?知識的呈現(xiàn)由抽象到具體進一步熟悉元素與集合的概念,讓學(xué)生分清實際問題中的集合和元素為后面學(xué)習(xí)兩者間的關(guān)系做好鋪墊。 教師在這一環(huán)節(jié)做好學(xué)習(xí)指導(dǎo),確定的對象組成的整體叫集合,如果對象不確定,就不能確定為集合(舉例)加深對概念的理解。 4、 熟悉鞏固集合的概念通過例題,練習(xí)、幫助學(xué)生進一步熟悉和理解集合的概念。 5、 集合的符號記法,為本節(jié)重點做好鋪墊。 6、 從實例入行手,探索元素和集合的關(guān)系,學(xué)生能用文字語言描述,如何用數(shù)學(xué)語言描述,給出元素與集合關(guān)系符號表示,在這個環(huán)節(jié)教師適當(dāng)引導(dǎo)學(xué)生積極主動參與到知識逐步形成過程,便于學(xué)生理解和掌握,落實本課的重點,學(xué)習(xí)指導(dǎo):⑴集合元素的確定。⑵理解兩符號的含義。 7、 思考交流本課的重要環(huán)節(jié)在課堂上給學(xué)生提供充分的活動時間和空間。通過自由舉例,能深化概念。同時還能提升學(xué)生的分析能力表達自己見解的能力。 8、 從所舉的例子中抽象出數(shù)集的概念,并給出常見數(shù)集的記法。 9、 學(xué)生練習(xí):通過練習(xí),識記常見數(shù)集的記法,同時進一步鞏固元素與集合間的關(guān)系。 10、知識的實際應(yīng)用: 問題不難,落實課本能力目標(biāo),培養(yǎng)學(xué)生運用數(shù)學(xué)的意識和能力初步培養(yǎng)學(xué)生應(yīng)用集合的眼光觀看世界。 11、課堂小節(jié) 以學(xué)生小節(jié)為主教師幫助為輔,鞏固所學(xué)知識,幫助學(xué)生認識到要學(xué)會梳理所學(xué)內(nèi)容,要學(xué)會總結(jié)反思,使學(xué)生的認識進一步升華,培養(yǎng)學(xué)生的鬼納總結(jié)能力。 六、評價 教學(xué)評價的及時能有效調(diào)動課堂氣氛,感染學(xué)生的情緒,對課堂教學(xué)發(fā)揮著積極作用,教學(xué)過程遵重學(xué)生之間的差異培養(yǎng)學(xué)生應(yīng)用集合的眼光看研究對象,注重過程評價與多元評價將教學(xué)評價貫穿于本堂課的每個教學(xué)環(huán)節(jié)。 七、教學(xué)反思 1、 通過現(xiàn)實生活中的實例,從特殊到一般,在具體感知基礎(chǔ)上得出集合的描述概念,便于學(xué)生理解接受。 2、 啟發(fā)探究教學(xué),營造學(xué)生的學(xué)習(xí)氛圍,培養(yǎng)學(xué)生自主學(xué)習(xí),合作交流的能力。 八、板書設(shè)計 【有關(guān)高中數(shù)學(xué)說課稿合集8篇】相關(guān)文章: 有關(guān)高中數(shù)學(xué)說課稿合集八篇07-24 有關(guān)高中數(shù)學(xué)說課稿合集六篇07-15 有關(guān)高中數(shù)學(xué)說課稿合集五篇06-18 有關(guān)高中數(shù)學(xué)說課稿范文合集9篇08-01 有關(guān)高中數(shù)學(xué)說課稿范文合集5篇07-31 有關(guān)高中數(shù)學(xué)說課稿模板合集8篇07-23 有關(guān)高中數(shù)學(xué)說課稿范文合集10篇07-19高中數(shù)學(xué)說課稿 篇4
高中數(shù)學(xué)說課稿 篇5
高中數(shù)學(xué)說課稿 篇6
高中數(shù)學(xué)說課稿 篇7
高中數(shù)學(xué)說課稿 篇8