精選高中數(shù)學(xué)說課稿模板合集八篇
作為一名人民教師,可能需要進(jìn)行說課稿編寫工作,說課稿有利于教學(xué)水平的提高,有助于教研活動的開展。我們該怎么去寫說課稿呢?下面是小編幫大家整理的高中數(shù)學(xué)說課稿8篇,歡迎閱讀與收藏。
高中數(shù)學(xué)說課稿 篇1
我說課的內(nèi)容是高中數(shù)學(xué)第二冊(上冊)第七章《直線和圓的方程》中的第六節(jié)“曲線和方程”的第一課時,下面我的說課將從以下幾個方面進(jìn)行闡述:
一、教材分析
教材的地位和作用
“曲線和方程”這節(jié)教材揭示了幾何中的形與代數(shù)中的數(shù)相統(tǒng)一的關(guān)系,為“作形判數(shù)”與“就數(shù)論形”的相互轉(zhuǎn)化開辟了途徑,這正體現(xiàn)了解析幾何這門課的基本思想,對全部解析幾何教學(xué)有著深遠(yuǎn)的影響。學(xué)生只有透徹理解了曲線和方程的意義,才算是尋得了解析幾何學(xué)習(xí)的入門之徑。如果以為學(xué)生不真正領(lǐng)悟曲線和方程的關(guān)系,照樣能求出方程、照樣能計算某些難題,因而可以忽視這個基本概念的教學(xué),這不能不說是一種“舍本逐題”的偏見,應(yīng)該認(rèn)識到這節(jié)“曲線和方程”的開頭課是解析幾何教學(xué)的“重頭戲”!
根據(jù)以上分析,確立教學(xué)重點是:“曲線的方程”與“方程的曲線”的概念;難點是:怎樣利用定義驗證曲線是方程的曲線,方程是曲線的方程。
二、教學(xué)目標(biāo)
根據(jù)教學(xué)大綱的要求以及本教材的地位和作用,結(jié)合高二學(xué)生的認(rèn)知特點確定教學(xué)目標(biāo)如下:
知識目標(biāo):
1、了解曲線上的點與方程的解之間的一一對應(yīng)關(guān)系;
2、初步領(lǐng)會“曲線的方程”與“方程的曲線”的概念;
3、學(xué)會根據(jù)已有的情景資料找規(guī)律,進(jìn)而分析、判斷、歸納結(jié)論;
4、強(qiáng)化“形”與“數(shù)”一致并相互轉(zhuǎn)化的思想方法。
能力目標(biāo):
1、通過直線方程的引入,加強(qiáng)學(xué)生對方程的解和曲線上的點的一一對應(yīng)關(guān)系的認(rèn)識;
2、在形成曲線和方程的概念的教學(xué)中,學(xué)生經(jīng)歷觀察、分析、討論等數(shù)學(xué)活動過程,探索出結(jié)論,并能有條理的闡述自己的觀點;
3、能用所學(xué)知識理解新的概念,并能運用概念解決實際問題,從中體會轉(zhuǎn)化化歸的思想方法,提高思維品質(zhì),發(fā)展應(yīng)用意識。
情感目標(biāo):
1、通過概念的引入,讓學(xué)生感受從特殊到一般的認(rèn)知規(guī)律;
2、通過反例辨析和問題解決,培養(yǎng)合作交流、獨立思考等良好的個性品質(zhì),以及勇于批判、敢于創(chuàng)新的科學(xué)精神。
三、重難點突破
“曲線的方程”與“方程的曲線”的概念是本節(jié)的重點,這是由于本節(jié)課是由直觀表象上升到抽象概念的過程,學(xué)生容易對定義中為什么要規(guī)定兩個關(guān)系產(chǎn)生困惑,原因是不理解兩者缺一都將擴(kuò)大概念的外延。由于學(xué)生已經(jīng)具備了用方程表示直線、拋物線等實際模型,積累了感性認(rèn)識的基礎(chǔ),所以可用舉反例的方法來解決困惑,通過反例揭示“兩者缺一”與直覺的矛盾,從而又促使學(xué)生對概念表述的嚴(yán)密性進(jìn)行探索,自然地得出定義。為了強(qiáng)化其認(rèn)識,又決定用集合相等的概念來解釋曲線和方程的對應(yīng)關(guān)系,并以此為工具來分析實例,這將有助于學(xué)生的理解,有助于學(xué)生通其法,知其理。
怎樣利用定義驗證曲線是方程的曲線,方程是曲線的方程是本節(jié)的難點。因為學(xué)生在作業(yè)中容易犯想當(dāng)然的錯誤,通常在由已知曲線建立方程的時候,不驗證方程的解為坐標(biāo)的點在曲線上,就斷然得出所求的是曲線方程。這種現(xiàn)象在高考中也屢見不鮮。為了突破難點,本節(jié)課設(shè)計了三種層次的問題,幻燈片9是概念的直接運用,幻燈片10是概念的逆向運用,幻燈片11是證明曲線的方程。通過這些例題讓學(xué)生再一次體會“二者”缺一不可。
四、學(xué)情分析
此前,學(xué)生已知,在建立了直角坐標(biāo)系后平面內(nèi)的點和有序?qū)崝?shù)對之間建立了一一對應(yīng)關(guān)系,已有了用方程(有時以函數(shù)式的形式出現(xiàn))表示曲線的感性認(rèn)識(特別是二元一次方程表示直線),現(xiàn)在要進(jìn)一步研究平面內(nèi)的曲線和含有兩個變數(shù)的方程之間的關(guān)系,是由直觀表象上升到抽象概念的過程,對學(xué)生有相當(dāng)大的難度。學(xué)生在學(xué)習(xí)時容易產(chǎn)生的問題是,不理解“曲線上的點的坐標(biāo)都是方程的解”和“以這個方程的解為坐標(biāo)的點都是曲線上的點”這兩句話在揭示“曲線和方程”關(guān)系時各自所起的作用。本節(jié)課的教學(xué)目標(biāo)也只能是初步領(lǐng)會,要求學(xué)生能答出曲線和方程間必須滿足兩個關(guān)系時才能稱作“曲線的方程”和“方程的曲線”,兩者缺一不可,并能借助實例指出兩個關(guān)系的區(qū)別。
高中數(shù)學(xué)說課稿 篇2
尊敬的各位評委、各位老師大家好!我說課的題目是《函數(shù)的單調(diào)性》,我將從四個方面來闡述我對這節(jié)課的設(shè)計.
一、教材分析
1、 教材的地位和作用
(1)本節(jié)課主要對函數(shù)單調(diào)性的學(xué)習(xí);
(2)它是在學(xué)習(xí)函數(shù)概念的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,同時又為基本初等函數(shù)的學(xué)習(xí)奠定了基礎(chǔ),所以他在教材中起著承前啟后的重要作用;(可以看看這一課題的前后章節(jié)來寫)
。3)它是歷年高考的熱點、難點問題
。ǜ鶕(jù)具體的課題改變就行了,如果不是熱點難點問題就刪掉)
2、 教材重、難點
重點:函數(shù)單調(diào)性的定義
難點:函數(shù)單調(diào)性的證明
重難點突破:在學(xué)生已有知識的基礎(chǔ)上,通過認(rèn)真觀察思考,并通過小組合作探究的辦法來實現(xiàn)重難點突破。(這個必須要有)
二、教學(xué)目標(biāo)
知識目標(biāo):(1)函數(shù)單調(diào)性的定義
。2)函數(shù)單調(diào)性的證明
能力目標(biāo):培養(yǎng)學(xué)生全面分析、抽象和概括的能力,以及了解由簡單到復(fù)雜,由特殊到一般的化歸思想
情感目標(biāo):培養(yǎng)學(xué)生勇于探索的精神和善于合作的意識
。ㄟ@樣的教學(xué)目標(biāo)設(shè)計更注重教學(xué)過程和情感體驗,立足教學(xué)目標(biāo)多元化)
三、教法學(xué)法分析
1、教法分析
“教必有法而教無定法”,只有方法得當(dāng)才會有效。新課程標(biāo)準(zhǔn)之處教師是教學(xué)的組織者、引導(dǎo)者、合作者,在教學(xué)過程要充分調(diào)動學(xué)生的積極性、主動性。本著這一原則,在教學(xué)過程中我主要采用以下教學(xué)方法:開放式探究法、啟發(fā)式引導(dǎo)法、小組合作討論法、反饋式評價法
2、學(xué)法分析
“授人以魚,不如授人以漁”,最有價值的知識是關(guān)于方法的只是。學(xué)生作為教學(xué)活動的主題,在學(xué)習(xí)過程中的參與狀態(tài)和參與度是影響教學(xué)效果最重要的因素。在學(xué)法選擇上,我主要采用:自主探究法、觀察發(fā)現(xiàn)法、合作交流法、歸納總結(jié)法。
。ㄇ叭糠钟脮r控制在三分鐘以內(nèi),可適當(dāng)刪減)
四、教學(xué)過程
1、以舊引新,導(dǎo)入新知
通過課前小研究讓學(xué)生自行繪制出一次函數(shù)f(x)=x和二次函數(shù)f(x)=x^2的圖像,并觀察函數(shù)圖象的特點,總結(jié)歸納。通過課上小組討論歸納,引導(dǎo)學(xué)生發(fā)現(xiàn),教師總結(jié):一次函數(shù)f(x)=x的圖像在定義域是直線上升的,而二次函數(shù)f(x)=x^2的圖像是一個曲線,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當(dāng)添加手勢,這樣看起來更自然)
2、創(chuàng)設(shè)問題,探索新知
緊接著提出問題,你能用二次函數(shù)f(x)=x^2表達(dá)式來描述函數(shù)在(-∞,0)的圖像?教師總結(jié),并板書,揭示函數(shù)單調(diào)性的定義,并注意強(qiáng)調(diào)可以利用作差法來判斷這個函數(shù)的單調(diào)性。
讓學(xué)生模仿剛才的表述法來描述二次函數(shù)f(x)=x^2在(0,+∞)的圖像,并找個別同學(xué)起來作答,規(guī)范學(xué)生的數(shù)學(xué)用語。
讓學(xué)生自主學(xué)習(xí)函數(shù)單調(diào)區(qū)間的定義,為接下來例題學(xué)習(xí)打好基礎(chǔ)。
3、 例題講解,學(xué)以致用
例1主要是對函數(shù)單調(diào)區(qū)間的鞏固運用,通過觀察函數(shù)定義在(—5,5)的圖像來找出函數(shù)的單調(diào)區(qū)間。這一例題主要以學(xué)生個別回答為主,學(xué)生回答之后通過互評來糾正答案,檢查學(xué)生對函數(shù)單調(diào)區(qū)間的掌握。強(qiáng)調(diào)單調(diào)區(qū)間一般寫成半開半閉的形式
例題講解之后可讓學(xué)生自行完成課后練習(xí)4,以學(xué)生集體回答的方式檢驗學(xué)生的學(xué)習(xí)效果。
例2是將函數(shù)單調(diào)性運用到其他領(lǐng)域,通過函數(shù)單調(diào)性來證明物理學(xué)的波意爾定理。這是歷年高考的熱點跟難點問題,這一例題要采用教師板演的方式,來對例題進(jìn)行證明,以規(guī)范總結(jié)證明步驟。一設(shè)二差三化簡四比較,注意要把f(x1)-f(x2)化簡成和差積商的形式,再比較與0的大小。
學(xué)生在熟悉證明步驟之后,做課后練習(xí)3,并以小組為單位找部分同學(xué)上臺板演,其他同學(xué)在下面自行完成,并通過自評、互評檢查證明步驟。
4、歸納小結(jié)
本節(jié)課我們主要學(xué)習(xí)了函數(shù)單調(diào)性的定義及證明過程,并在教學(xué)過程中注重培養(yǎng)學(xué)生勇于探索的精神和善于合作的意識。
5、作業(yè)布置
為了讓學(xué)生學(xué)習(xí)不同的數(shù)學(xué),我將采用分層布置作業(yè)的方式:一組 習(xí)題1.3A組1、2、3 ,二組 習(xí)題1.3A組2、3、B組1、2
6、板書設(shè)計
我力求簡潔明了地概括本節(jié)課的學(xué)習(xí)要點,讓學(xué)生一目了然。
。ㄟ@部分最重要用時六到七分鐘,其中定義講解跟例題講解一定要說明學(xué)生的活動)
五、教學(xué)評價
本節(jié)課是在學(xué)生已有知識的基礎(chǔ)上學(xué)習(xí)的,在教學(xué)過程中通過自主探究、合作交流,充分調(diào)動學(xué)生的積極性跟主動性,及時吸收反饋信息,并通過學(xué)生的自評、互評,讓內(nèi)部動機(jī)和外界刺激協(xié)調(diào)作用,促進(jìn)其數(shù)學(xué)素養(yǎng)不斷提高。
高中數(shù)學(xué)說課稿 篇3
一、教學(xué)內(nèi)容分析
圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無數(shù)次實踐后的高度抽象.恰當(dāng)?shù)乩枚x解題,許多時候能以簡馭繁.因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強(qiáng)調(diào)定義,學(xué)會利用圓錐曲線定義來熟練的解題”。
二、學(xué)生學(xué)習(xí)情況分析
我所任教班級的學(xué)生參與課堂教學(xué)活動的積極性強(qiáng),思維活躍,但計算能力較差,推理能力較弱,使用數(shù)學(xué)語言的表達(dá)能力也略顯不足。
三、設(shè)計思想
由于這部分知識較為抽象,如果離開感性認(rèn)識,容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情.在教學(xué)時,借助多媒體動畫,引導(dǎo)學(xué)生主動發(fā)現(xiàn)問題、解決問題,主動參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率.
四、教學(xué)目標(biāo)
1.深刻理解并熟練掌握圓錐曲線的定義,能靈活應(yīng)用定義解決問題;熟練掌握焦點坐標(biāo)、頂點坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識求解圓錐曲線的方程。
2.通過對練習(xí),強(qiáng)化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設(shè)問,引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。
3.借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣.
五、教學(xué)重點與難點:
教學(xué)重點
1.對圓錐曲線定義的理解
2.利用圓錐曲線的定義求“最值”
3.“定義法”求軌跡方程
教學(xué)難點:
巧用圓錐曲線定義解題
六、教學(xué)過程設(shè)計
【設(shè)計思路】
(一)開門見山,提出問題
一上課,我就直截了當(dāng)?shù)亟o出——
例題1:(1) 已知A(-2,0), B(2,0)動點M滿足|MA|+|MB|=2,則點M的軌跡是( )。
(A)橢圓 (B)雙曲線 (C)線段 (D)不存在
(2)已知動點 M(x,y)滿足(x1)2(y2)2|3x4y|,則點M的軌跡是( )。
(A)橢圓 (B)雙曲線 (C)拋物線 (D)兩條相交直線
【設(shè)計意圖】
定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習(xí)和研究數(shù)學(xué)的一個必備條件,而通過一個階段的學(xué)習(xí)之后,學(xué)生們對圓錐曲線的定義已有了一定的認(rèn)識,他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問題。
為了加深學(xué)生對圓錐曲線定義理解,我以圓錐曲線的定義的運用為主線,精心準(zhǔn)備了兩道練習(xí)題。
【學(xué)情預(yù)設(shè)】
估計多數(shù)學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對于圓錐曲線的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著說出:若想答案是其他選項的話,條件要怎么改?這對于已學(xué)完圓錐曲線這部分知識的學(xué)生來說,并不是什么難事。但問題(2)就可能讓學(xué)生們費一番周折—— 如果有學(xué)生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)2
5這樣,很快就能得出正確結(jié)果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|5
入手,考慮通過適當(dāng)?shù)淖冃,轉(zhuǎn)化為學(xué)生們熟知的兩個距離公式。
在對學(xué)生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標(biāo)是 ,實軸長為 ,焦距為 。以深化對概念的理解。
(二)理解定義、解決問題
例2 (1)已知動圓A過定圓B:x2y26x70的圓心,且與定圓C:xy6x910 相內(nèi)切,求△ABC面積的最大值。
(2)在(1)的條件下,給定點P(-2,2), 求|PA|
七、教學(xué)反思
1.本課將借助于“XXX”,將使全體學(xué)生參與活動成為可能,使原來令人難以理解的抽象的數(shù)學(xué)理論變得形象,生動且通俗易懂,同時,運用“多媒體課件”輔助教學(xué),節(jié)省了板演的時間,從而給學(xué)生留出更多的時間自悟、自練、自查,充分發(fā)揮學(xué)生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學(xué)理念的有機(jī)結(jié)合的教學(xué)優(yōu)勢。
2.利用兩個例題及其引申,通過一題多變,層層深入的探索,以及對猜測結(jié)果的檢測研究,培養(yǎng)學(xué)生思維能力,使學(xué)生從學(xué)會一個問題的求解到掌握一類問題的解決方法. 循序漸進(jìn)的讓學(xué)生把握這類問題的解法;將學(xué)生容易混淆的兩類求“最值問題”并為一道題,方便學(xué)生進(jìn)行比較、分析。雖然從表面上看,我這一堂課的教學(xué)容量不大,但事實上,學(xué)生們的思維運動量并不會小。
總之,如何更好地選擇符合學(xué)生具體情況,滿足教學(xué)目標(biāo)的例題與練習(xí)、靈活把握課堂教學(xué)節(jié)奏仍是我今后工作中的一個重要研究課題.而要能真正進(jìn)行素質(zhì)教育,培養(yǎng)學(xué)生的創(chuàng)新意識,自己首先必須更新觀念——在教學(xué)中適度使用多媒體技術(shù),讓學(xué)生有參與教學(xué)實踐的機(jī)會,能夠使學(xué)生在學(xué)習(xí)新知識的同時,激發(fā)起求知的欲望,在尋求解決問題的辦法的過程中獲得自信和成功的體驗,于不知不覺中改善了他們的思維品質(zhì),提高了數(shù)學(xué)思維能力。
高中數(shù)學(xué)說課稿 篇4
各位評委老師好:今天我說課的題目是
是必修章第節(jié)的內(nèi)容,我將以新課程標(biāo)準(zhǔn)的理念指導(dǎo)本節(jié)課的教學(xué),從教材分析,教法學(xué)法,教學(xué)過程,教學(xué)評價四個方面加以說明。
一、 教材分析
是在學(xué)習(xí)了基礎(chǔ)上進(jìn)一步研究 并為后面學(xué)習(xí) 做準(zhǔn)備,在整個
高中數(shù)學(xué)中起著承上啟下的作用,因此本節(jié)內(nèi)容十分重要。
根據(jù)新課標(biāo)要求和學(xué)生實際水平我制定以下教學(xué)目標(biāo)
1、 知識能力目標(biāo):使學(xué)生理解掌握
2、 過程方法目標(biāo):通過觀察歸納抽象概括使學(xué)生構(gòu)建領(lǐng)悟 數(shù)學(xué)思想,培養(yǎng) 能力
3、 情感態(tài)度價值觀目標(biāo):通過學(xué)習(xí)體驗數(shù)學(xué)的科學(xué)價值和應(yīng)用價值,培養(yǎng)善于
觀察勇于思考的學(xué)習(xí)習(xí)慣和嚴(yán)謹(jǐn) 的科學(xué)態(tài)度
根據(jù)教學(xué)目標(biāo)、本節(jié)特點和學(xué)生實際情況本節(jié)重點是 ,由于學(xué)生對 缺少感性認(rèn)識,所以本節(jié)課的重點是
二、教法學(xué)法
根據(jù)教師主導(dǎo)地位和學(xué)生主體地位相統(tǒng)一的規(guī)律,我采用引導(dǎo)發(fā)現(xiàn)法為本節(jié)課的主要教學(xué)方法并借助多媒體為輔助手段。在教師點撥下,學(xué)生自主探索、合作交流來尋求解決問題的方法。
三、 教學(xué)過程
四、 教學(xué)程序及設(shè)想
1、由……引入:
把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學(xué)生產(chǎn)生強(qiáng)烈的問題意識,使學(xué)生的整個學(xué)習(xí)過程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過程。 在實際情況下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗,同化和索引出當(dāng)前學(xué)習(xí)的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問題情境中。
對于本題:……
2、由實例得出本課新的知識點是:……
3、講解例題。
我們在講解例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進(jìn)行概括,有利于發(fā)展學(xué)生的思維能力。在題中:
4、能力訓(xùn)練。
課后練習(xí)……
使學(xué)生能鞏固羨慕自覺運用所學(xué)知識與解題思想方法。
5、總結(jié)結(jié)論,強(qiáng)化認(rèn)識。
知識性內(nèi)容的小結(jié),可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì);數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐漸培養(yǎng)學(xué)生的良好的個性品質(zhì)目標(biāo)。
6、變式延伸,進(jìn)行重構(gòu)。
重視課本例題,適當(dāng)對題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對知識的串聯(lián)、累積、加工,從而達(dá)到舉一反三的效果。
五、教學(xué)評價
學(xué)生學(xué)習(xí)的學(xué)習(xí)結(jié)果評價當(dāng)然重要,但是更重要的是學(xué)生學(xué)習(xí)的過程評價,教師應(yīng)
當(dāng)高度重視學(xué)生學(xué)習(xí)過程中的參與度、自信心、團(tuán)隊精神合作意識數(shù)學(xué)能力的發(fā)現(xiàn),以及學(xué)習(xí)的興趣和成就感。
高中數(shù)學(xué)說課稿 篇5
一、 說教材
。ㄒ唬┙滩牡牡匚缓妥饔
本節(jié)內(nèi)容著重介紹了三角形的三種特殊線段,已學(xué)過的過直線外一點作已知直線的垂線、線段的中點、角的平分線等知識是學(xué)習(xí)本節(jié)新知識的基礎(chǔ),其中三角形的高學(xué)生從小學(xué)起已開始接觸,教材從學(xué)生已有認(rèn)知出發(fā),從高入手,利用圖形,給高作了具體定義,使學(xué)生了解三角形的高為線段,進(jìn)而引出三角形的另外幾種特殊線段——中線、角平分線。通過本節(jié)內(nèi)容學(xué)習(xí),可使學(xué)生掌握三角形的高、中線、角平分線與垂線、角平分線的聯(lián)系與區(qū)別。通過學(xué)習(xí)作圖、觀察與探究,會發(fā)現(xiàn)三角形的三條高所在的直線、三條角平分線、三條中線都各自交于一點,這為以后三角形的內(nèi)心、重心等知識的學(xué)習(xí)打下一定的基礎(chǔ),另外,本節(jié)內(nèi)容也是日后學(xué)習(xí)等腰三角形等特殊三角形的墊腳石。故學(xué)好本節(jié)內(nèi)容是十分必要的。因此,對三角的高、中線、角平分線定義的理解及畫法的掌握是本節(jié)教學(xué)的重點,而三角形的高由于三角形的形狀改變而使其位置呈現(xiàn)多樣性,學(xué)生難以掌握,故在各類三角形中作出它們是本課的難點。
。ǘ┙虒W(xué)目標(biāo)分析
本節(jié)課的教學(xué)設(shè)計力圖體現(xiàn)“尊重學(xué)生,注重發(fā)展”的教學(xué)理念,著重培養(yǎng)和發(fā)展學(xué)生基本作圖能力、語言表達(dá)能力、觀察能力等,根據(jù)這一目的確定本節(jié)教學(xué)目標(biāo)為:
1、理解三角形的高、中線、角平分線的概念
2、能正確作出一個三角形的高、中線、角平分線
3、通過觀察、探究、畫一畫、折一折與描述等數(shù)學(xué)活動,感受數(shù)學(xué)語言的準(zhǔn)確性,提高觀察能力,語言表達(dá)能力,發(fā)展推理能力。
重點:掌握三角形的高、中線、角平分線的概念,并能在具體三角形中畫出它們
難點:在各種三角形中作出它們的高
二、 說教法
1、情境創(chuàng)設(shè)法 :利用張師傅如何將一塊三角形的地分成面積相等的兩塊三角形地創(chuàng)設(shè)問題情境,并引導(dǎo)學(xué)生去簡單分析思路,目的使數(shù)學(xué)能密切聯(lián)系實際體現(xiàn)知識的形成和應(yīng)用過程。以實際問題為出發(fā)點和歸宿,更能貼近學(xué)生生活,以激發(fā)學(xué)生對學(xué)習(xí)本節(jié)內(nèi)容的求知欲,培養(yǎng)他們運用所學(xué)知識解決問題的能力。
2、加強(qiáng)學(xué)生學(xué)習(xí)的主動性與探究性 在課堂中要充分調(diào)動學(xué)生自主學(xué)習(xí)的潛能,讓他們自由探究中發(fā)現(xiàn),從而發(fā)展他們的創(chuàng)新能力,讓他們感受到成功的喜悅。學(xué)生在畫一畫、折一折、何三個探究活動中體驗數(shù)學(xué)知識的形成過程。當(dāng)學(xué)生在探究過程中遇到困難時,才取消組建的交流與合作,充分發(fā)揮學(xué)生的團(tuán)隊作用,以更好地激發(fā)學(xué)生的積極思維,得到更大的收獲。
3、運用多媒體等作為教輔工具,增強(qiáng)學(xué)生的直觀感受,掃除學(xué)生從形象思維難以跨越到抽象思維的障礙,突出重點,突破難點。
三、說學(xué)法
1、本節(jié)重點是三角形的三種重要線段,難點是對三角形的角平分線、中線、高的準(zhǔn)確理解、作圖與正確運用,而突破難點的關(guān)鍵是運用好數(shù)形結(jié)合的數(shù)學(xué)思想從畫圖入手,從大量的活動入手獲得三種線段的直觀形象,進(jìn)一步架起數(shù)與形之間的橋梁,加強(qiáng)知識間的相互聯(lián)系。
2、小組討論、合作探究,既可讓學(xué)生互相啟發(fā),互相促進(jìn),積極交流,表達(dá)思想又可促進(jìn)數(shù)學(xué)思考,擴(kuò)大和加深對問題的認(rèn)識,本節(jié)課中我讓學(xué)生以小組進(jìn)行探究,歸納圖形特征,做到仔細(xì)觀察,大膽探索,勇于發(fā)現(xiàn),抽象概括。讓學(xué)生通過探索活動來發(fā)現(xiàn)結(jié)論,經(jīng)歷知識的“再發(fā)現(xiàn)”過程,從而改變學(xué)生學(xué)習(xí)的方式,發(fā)展創(chuàng)新思維能力。
四、說教學(xué)過程:
1、創(chuàng)設(shè)問題情境,引出新知: 從生活實例引出新問題,調(diào)動學(xué)生學(xué)習(xí)積極性
2、預(yù)習(xí)檢查:以題組的形勢
考點1:三角形的高
1.如圖7.1.2-1,在△ABC中,BC邊上的高是________;在△AFC中,CF邊上的高是________;在△ABE中,AB邊上的高是_________.
2.如圖7.1.2-2,△ABC的三條高AD、BE、CF相交于點H,則△ABH的三條高是_______,這三條高交于________.BD是△________、△________、△________的高.
3.如圖7.1.2-3,在△ABC中EF∥AC,BD⊥AC于D,交EF于G,則下面說話中錯誤的是( )
A.BD是△ABC的高 BD是△BCD的高 C.EG是△ABD的高 D.BG是△BEF的高
7.1.2《三角形的高、中線、角平分線》說課稿
圖7.1.2-1 圖7.1.2-2 圖7.1.2-3
4.如果一個三角形的三條高的交點恰是三角形的一個頂點,那么這個三角形是( )
A.銳角三角形 B.直角三角形 C.鈍角三角形 D.不能確定
5.三角形的三條高的交點一定在( )
A.三角形內(nèi)部 B.三角形的外部 C.三角形的內(nèi)部或外部 D.以上答案都不對
考點2:三角形的中線與角平分線
6.如圖7.1.2-5所示:(1)AD⊥BC,垂足為D,則AD是________的高,∠________=∠________=90°.
。2)AE平分∠BAC,交BC于E點,則AE叫做△ABC的________,∠________=∠________=7.1.2《三角形的高、中線、角平分線》說課稿∠________.
(3)若AF=FC,則△ABC的中線是________,S△ABF=________.
。4)若BG=GH=HF,則AG是________的中線,AH是________的中線.
圖7.1.2-5 圖7.1.2-6 圖7.1.2-7
7.如圖7.1.2-6,DE∥BC,CD是∠ACB的平分線,∠ACB=60°,那么∠EDC=______度.
8.如圖7.1.2-7,BD=DC,∠ABN=7.1.2《三角形的高、中線、角平分線》說課稿∠ABC,則AD是△ABC的________線,BN是△ABC的________,
ND是△BNC的________線.
9.下列判斷中,正確的個數(shù)為( )
(1)D是△ABC中BC邊上的一個點,且BD=CD,則AD是△ABC的中線
。2)D是△ABC中BC邊上的一個點,且∠ADC=90°,則AD是△ABC的高
。3)D是△ABC中BC邊上的一個點,且∠BAD=7.1.2《三角形的高、中線、角平分線》說課稿∠BAC,則AD是△ABC的角平分線
。4)三角形的中線、高、角平分線都是線段
A.1 B.2 C.3 D.4
3、探究活動1:探究三角形的高,師提出問題,生獨立解答,教師關(guān)注學(xué)生對高和邊的對應(yīng)關(guān)系是否明確,并結(jié)合圖形引出三角形高的定義,并且利用圖形,讓生用語言描述,師加以修正,目的發(fā)展學(xué)生的觀察力與語言表述能力。在此基礎(chǔ)上讓學(xué)生明確三角形的高是一條線段。為了培養(yǎng)學(xué)生的繪圖能力,讓小組之間合作完成銳角三角形、直角三角形、鈍角三角形各邊上的高。小組交流,歸納三角形高的特點,再讓他們敘述小組所探究的結(jié)論,師加以適當(dāng)修正與鼓勵。
在活動中,師應(yīng)重點關(guān)注:
、賹W(xué)生能否多方位的加以探究
、趯W(xué)生能否用流利的語言描述自己的發(fā)現(xiàn)
③學(xué)生能否對不同的觀點進(jìn)行質(zhì)疑,感受數(shù)學(xué)結(jié)論的正確性。之后設(shè)計的是鞏固性練習(xí),通過學(xué)生練習(xí),對三角形高的的有關(guān)知識加以鞏固,讓學(xué)生從運用所學(xué)知識解決問題的過程,獲得成功的體驗,從而激發(fā)他們學(xué)習(xí)的積極性。
3、探究活動2 : 探究三角形的中線:學(xué)生在畫一畫中體會三角形中線的定義,培養(yǎng)學(xué)生動腦、動手能力,語言表達(dá)能力。
4、探究活動3:探究三角形的角平分線。首先讓學(xué)生折一折,在動手操作中體會折痕是否平分三角形的內(nèi)角,之后分小組折疊銳角三角形、直角三角形、鈍角三角形的角平分線,小組交流,歸納三角形角平分線的特點,再讓他們敘述小組所探究的結(jié)論,師加以適當(dāng)修正與鼓勵。從而很好的培養(yǎng)了學(xué)生的動手操作和探究能力。
5、練習(xí)鞏固,深化拓展
先以搶答形式解決問題1、問題2,讓學(xué)生利用所學(xué)知識,進(jìn)一步鞏固三角形的高、中線、角平分線的.有關(guān)概念,提高學(xué)生獨立解決問題的能力。拓展練習(xí)是一個綜合性題目,一方面引導(dǎo)學(xué)生從復(fù)雜圖形中抽取基本圖形,從而加強(qiáng)學(xué)生對概念的掌握,進(jìn)一步發(fā)展學(xué)生的思維,拓展能力,運用以增強(qiáng)直觀性。
6、感悟與收獲:進(jìn)一步提升學(xué)生對知識點理解。
7、作業(yè)布置:讓學(xué)生運用數(shù)學(xué)知識解決生活實例,是讓學(xué)生感受數(shù)學(xué)和生活的聯(lián)系及數(shù)學(xué)在生活中的重要性,充分體現(xiàn)數(shù)學(xué)于生活又還原于生活。
高中數(shù)學(xué)說課稿 篇6
一、背景分析
1、學(xué)習(xí)任務(wù)分析:充要條件是中學(xué)數(shù)學(xué)中最重要的數(shù)學(xué)概念之一,它主要討論了命題的條件與結(jié)論之間的邏輯關(guān)系,目的是為今后的數(shù)學(xué)學(xué)習(xí)特別是數(shù)學(xué)推理的學(xué)習(xí)打下基礎(chǔ)。
教學(xué)重點:充分條件、必要條件和充要條件三個概念的定義。
2、學(xué)生情況分析:從學(xué)生學(xué)習(xí)的角度看,與舊教材相比,教學(xué)時間的前置,造成學(xué)生在學(xué)習(xí)充要條件這一概念時的知識儲備不夠豐富,邏輯思維能力的訓(xùn)練不夠充分,這也為教師的教學(xué)帶來一定的困難.因此,新教材在第一章的小結(jié)與復(fù)習(xí)中,把學(xué)生的學(xué)習(xí)要求規(guī)定為“初步掌握充要條件”(注意:新教學(xué)大綱的教學(xué)目標(biāo)是“掌握充要條件的意義”),這是比較切合教學(xué)實際的.由此可見,教師在充要條件這一內(nèi)容的新授教學(xué)時,不可拔高要求追求一步到位,而要在今后的教學(xué)中滾動式逐步深化,使之與學(xué)生的知識結(jié)構(gòu)同步發(fā)展完善。
教學(xué)難點:“充要條件”這一節(jié)介紹了充分條件,必要條件和充要條件三個概念,由于這些概念比較抽象,中學(xué)生不易理解,用它們?nèi)ソ鉀Q具體問題則更為困難,因此”充要條件”的教學(xué)成為中學(xué)數(shù)學(xué)的難點之一,而必要條件的定義又是本節(jié)內(nèi)容的難點.根據(jù)多年教學(xué)實踐,學(xué)生對”充分條件”的概念較易接受,而必要條件的概念都難以理解.對于“B=A”,稱A是B的必要條件難于接受,A本是B推出的結(jié)論,怎么又變成條件了呢?對這學(xué)生難于理解。
教學(xué)關(guān)鍵:找出A、B,根據(jù)定義判斷A=B與B=A是否成立。教學(xué)中,要強(qiáng)調(diào)先找出A、B,否則,學(xué)生可能會對必要條件難以理解。
二、教學(xué)目標(biāo)設(shè)計:
(一)知識目標(biāo):
1、正確理解充分條件、必要條件、充要條件三個概念。
2、能利用充分條件、必要條件、充要條件三個概念,熟練判斷四種命題間的關(guān)系。
。ǘ┠芰δ繕(biāo):
1、培養(yǎng)學(xué)生的觀察與類比能力:“會觀察”,通過大量的問題,會觀察其共性及個性。
2、培養(yǎng)學(xué)生的歸納能力:“敢歸納”,敢于對一些事例,觀察后進(jìn)行歸納,總結(jié)出一般規(guī)律。
。ㄈ┣楦心繕(biāo):
1、通過以學(xué)生為主體的教學(xué)方法,讓學(xué)生自己構(gòu)造數(shù)學(xué)命題,發(fā)展體驗獲取知識的感受。
2、通過對命題的四種形式及充分條件,必要條件的相對性,培養(yǎng)同學(xué)們的辯證唯物主義觀點。
3、通過“會觀察”,“敢歸納”,“善建構(gòu)”,培養(yǎng)學(xué)生自主學(xué)習(xí),勇于創(chuàng)新,多方位審視問題的創(chuàng)造技巧,敢于把錯誤的思維過程及弱點暴露出來,并在問題面前表現(xiàn)出濃厚的興趣和不畏困難、勇于進(jìn)取的精神。
三、教學(xué)結(jié)構(gòu)設(shè)計:
數(shù)學(xué)知識來源于生活實際,生活本身又是一個巨大的數(shù)學(xué)課堂,我在教學(xué)過程中注重把教材內(nèi)容與生活實踐結(jié)合起來,加強(qiáng)數(shù)學(xué)教學(xué)的實踐性,給數(shù)學(xué)找到生活的原型。我對本節(jié)課的數(shù)學(xué)知識結(jié)構(gòu)進(jìn)行創(chuàng)造性地“教學(xué)加工”,在教學(xué)方法上采用了“合作——探索”的開放式教學(xué)模式,使課堂教學(xué)體現(xiàn)“參與式”、“生活化”、“探索性”,保證學(xué)生對數(shù)學(xué)知識的主動獲取,促進(jìn)學(xué)生充分、和諧、自主、個性化的發(fā)展。
整體思路為:教師創(chuàng)設(shè)情境,激發(fā)興趣,引出課題 引導(dǎo)學(xué)生分析實例,給出定義 例題分析(采用開放式教學(xué)) 知識小結(jié) 擴(kuò)展例題 練習(xí)反饋
整個教學(xué)設(shè)計的主要特色:
。1)由生活事例引出課題;
。2)采用開放式教學(xué)模式;
。3)擴(kuò)展例題是分析生活中的名言名句,又將數(shù)學(xué)融入生活中。
努力做到:“教為不教,學(xué)為會學(xué)”;要“授之以魚”更要“授之以漁”。
四、教學(xué)媒體設(shè)計:
本節(jié)課是概念課,要避免單一的下定義作練習(xí)模式,應(yīng)該努力使課堂元素更為豐富。這節(jié)課,我借助了多媒體課件,配合教學(xué),添加了一些與例題相匹配的圖片背景,以激發(fā)學(xué)生的學(xué)習(xí)興趣,另外將學(xué)生的自編題利用多媒體課件展示出來分析,提高了課堂教學(xué)的效率。
五、教學(xué)過程設(shè)計:
第一,創(chuàng)設(shè)情境,激發(fā)興趣,引出課題:
考慮到高一學(xué)生學(xué)習(xí)這一章的知識儲備不足,我利用日常生活中的具體事例來提出本課的問題,并與學(xué)生共同利用原有的知識分析,事例中包括幾個問題,為后面定義的分析埋下伏筆。
我用的第一個事例是:“做一件襯衫,需用布料,到布店去買,問營業(yè)員應(yīng)該買多少?他說買3米足夠了!边@樣,就產(chǎn)生了“3米布料”與“做一件襯衫夠不夠”的關(guān)系。用這個事件目的是為了第二部分引導(dǎo)學(xué)生得出充分條件的定義。這里要強(qiáng)調(diào)該事件包括:A:有3米布料;B:做一件襯衫夠了。
第二個事例是:“一人病重,呼吸困難,急診住院接氧氣!本彤a(chǎn)生了“氧氣”與“活命與否”的關(guān)系。用這個事件的目的是為了第二部分引導(dǎo)學(xué)生得出必要條件的定義。這里要強(qiáng)調(diào)該事件包括:A:接氧氣;B:活了。
用以上兩個生活中的事例來說明數(shù)學(xué)中應(yīng)研究的概念、關(guān)系,會使學(xué)生感到親切自然,有助于提高興趣和深入領(lǐng)會概念的內(nèi)容,特別是它的必要性。
第二,引導(dǎo)學(xué)生分析實例,給出定義。
在第一部分激發(fā)起學(xué)生的學(xué)習(xí)興趣后,緊接著開展第二部分,引導(dǎo)學(xué)生分析實例,讓學(xué)生從事例中抽象出數(shù)學(xué)概念,得出本節(jié)課所要學(xué)習(xí)的充分條件和必要條件的定義。在引導(dǎo)過程中盡量放慢語速,結(jié)合事例幫助學(xué)生分析。
得出定義之后,這里有必要再利用本課前面兩節(jié)的“邏輯聯(lián)結(jié)詞”和“四種命題”的知識來加強(qiáng)對必要條件定義的理解。(用前面的例子來說即:“活了,則說明在輸氧”)可記作: 。
還應(yīng)指出的是“必要條件”的定義,有如繞口令,要一次廓清,不可拖泥帶水。這里,只要一下子“定義”清楚了,下邊再解釋“ ,A是B的必要條件”是怎么回事。這樣處理,學(xué)生更容易接受“必要”二字。(因無A則無B,故欲有B,A是必要的)。
當(dāng)兩個定義分別給出后,我又對它們之間的區(qū)別加以分析說明,(充分條件可能會有多余,浪費,必要條件可能還不足(以使事件B成立))從而順理成章地引出充要條件的定義(既是必要條件,又是充分條件,就稱為充分必要條件,簡稱充要條件,記作: 。(不多不少,恰到好處)。使學(xué)生在此先對兩個充分條件和必要條件兩個概念的不同有了第一次的認(rèn)識,第三部分再利用具體的數(shù)學(xué)事例來強(qiáng)化。
高中數(shù)學(xué)說課稿 篇7
一、教學(xué)背景分析
1、教材結(jié)構(gòu)分析
《圓的方程》安排在高中數(shù)學(xué)第二冊(上)第七章第六節(jié)。圓作為常見的簡單幾何圖形,在實際生活和生產(chǎn)實踐中有著廣泛的應(yīng)用。圓的方程屬于解析幾何學(xué)的基礎(chǔ)知識,是研究二次曲線的開始,對后續(xù)直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容的學(xué)習(xí),無論在知識上還是方法上都有著積極的意義,所以本節(jié)內(nèi)容在整個解析幾何中起著承前啟后的作用。
2、學(xué)情分析
圓的方程是學(xué)生在初中學(xué)習(xí)了圓的概念和基本性質(zhì)后,又掌握了求曲線方程的一般方法的基礎(chǔ)上進(jìn)行研究的。但由于學(xué)生學(xué)習(xí)解析幾何的時間還不長、學(xué)習(xí)程度較淺,且對坐標(biāo)法的運用還不夠熟練,在學(xué)習(xí)過程中難免會出現(xiàn)困難。另外學(xué)生在探究問題的能力,合作交流的意識等方面有待加強(qiáng)。
根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我制定如下教學(xué)目標(biāo):
3、教學(xué)目標(biāo)
(1) 知識目標(biāo):①掌握圓的標(biāo)準(zhǔn)方程;
、跁蓤A的標(biāo)準(zhǔn)方程寫出圓的半徑和圓心坐標(biāo),能根據(jù)條件寫出圓的標(biāo)準(zhǔn)方程;
、劾脠A的標(biāo)準(zhǔn)方程解決簡單的實際問題。
(2) 能力目標(biāo):①進(jìn)一步培養(yǎng)學(xué)生用代數(shù)方法研究幾何問題的能力;
、诩由顚(shù)形結(jié)合思想的理解和加強(qiáng)對待定系數(shù)法的運用;
③增強(qiáng)學(xué)生用數(shù)學(xué)的意識。
(3) 情感目標(biāo):①培養(yǎng)學(xué)生主動探究知識、合作交流的意識;
、谠隗w驗數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣。
根據(jù)以上對教材、教學(xué)目標(biāo)及學(xué)情的分析,我確定如下的教學(xué)重點和難點:
4、教學(xué)重點與難點
(1)重點:圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用。
(2)難點: ①會根據(jù)不同的已知條件求圓的標(biāo)準(zhǔn)方程;
、谶x擇恰當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實際問題。
為使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再從教法和學(xué)法上進(jìn)行分析:
二、教法學(xué)法分析
1、教法分析 為了充分調(diào)動學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“啟發(fā)式”問題教學(xué)法,用環(huán)環(huán)相扣的問題將探究活動層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區(qū)上。另外我恰當(dāng)?shù)睦枚嗝襟w課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng)設(shè)實際問題的情境既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又直觀的引導(dǎo)了學(xué)生建模的過程。
2、學(xué)法分析 通過推導(dǎo)圓的標(biāo)準(zhǔn)方程,加深對用坐標(biāo)法求軌跡方程的理解。通過求圓的標(biāo)準(zhǔn)方程,理解必須具備三個獨立的條件才可以確定一個圓。通過應(yīng)用圓的標(biāo)準(zhǔn)方程,熟悉用待定系數(shù)法求的過程。
下面我就對具體的教學(xué)過程和設(shè)計加以說明:
三、教學(xué)過程與設(shè)計
整個教學(xué)過程是由七個問題組成的問題鏈驅(qū)動的,共分為五個環(huán)節(jié):
創(chuàng)設(shè)情境 啟迪思維 深入探究 獲得新知 應(yīng)用舉例 鞏固提高
反饋訓(xùn)練 形成方法 小結(jié)反思 拓展引申
下面我從縱橫兩方面敘述我的教學(xué)程序與設(shè)計意圖。
首先:縱向敘述教學(xué)過程
(一)創(chuàng)設(shè)情境——啟迪思維
問題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2。7m,高為3m的貨車能不能駛?cè)脒@個隧道?
通過對這個實際問題的探究,把學(xué)生的思維由用勾股定理求線段CD的長度轉(zhuǎn)移為用曲線的方程來解決。一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結(jié)論的同時學(xué)生自己推導(dǎo)出了圓心在原點,半徑為4的圓的標(biāo)準(zhǔn)方程,從而很自然的進(jìn)入了本課的主題。用實際問題創(chuàng)設(shè)問題情境,讓學(xué)生感受到問題來源于實際,應(yīng)用于實際,激發(fā)了學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)欲望。這樣獲取的知識,不但易于保持,而且易于遷移。
通過對問題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標(biāo)法研究圓的方程上來,此時再把問題深入,進(jìn)入第二環(huán)節(jié)。
(二)深入探究——獲得新知
問題二 1、根據(jù)問題一的探究能不能得到圓心在原點,半徑為的圓的方程?
2、如果圓心在,半徑為時又如何呢?
這一環(huán)節(jié)我首先讓學(xué)生對問題一進(jìn)行歸納,得到圓心在原點,半徑為4的圓的標(biāo)準(zhǔn)方程后,引導(dǎo)學(xué)生歸納出圓心在原點,半徑為r的圓的標(biāo)準(zhǔn)方程。然后再讓學(xué)生對圓心不在原點的情況進(jìn)行探究。我預(yù)設(shè)了三種方法等待著學(xué)生的探究結(jié)果,分別是:坐標(biāo)法、圖形變換法、向量平移法。
得到圓的標(biāo)準(zhǔn)方程后,我設(shè)計了由淺入深的三個應(yīng)用平臺,進(jìn)入第三環(huán)節(jié)。
(三)應(yīng)用舉例——鞏固提高
I、直接應(yīng)用 內(nèi)化新知
問題三 1、寫出下列各圓的標(biāo)準(zhǔn)方程:
(1)圓心在原點,半徑為3;
(2)經(jīng)過點,圓心在點。
2、寫出圓的圓心坐標(biāo)和半徑。
我設(shè)計了兩個小問題,第一題是直接或間接的給出圓心坐標(biāo)和半徑求圓的標(biāo)準(zhǔn)方程,第二題是給出圓的標(biāo)準(zhǔn)方程求圓心坐標(biāo)和半徑,這兩題比較簡單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握圓心坐標(biāo)、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,為后面探究圓的切線問題作準(zhǔn)備。
II、靈活應(yīng)用 提升能力
問題四 1、求以點為圓心,并且和直線相切的圓的方程。
2、求過點,圓心在直線上且與軸相切的圓的方程。
3、已知圓的方程為,求過圓上一點的切線方程。
你能歸納出具有一般性的結(jié)論嗎?
已知圓的方程是,經(jīng)過圓上一點的切線的方程是什么?
我設(shè)計了三個小問題,第一個小題有了剛剛解決問題三的基礎(chǔ),學(xué)生會很快求出半徑,根據(jù)圓心坐標(biāo)寫出圓的標(biāo)準(zhǔn)方程。第二個小題有些困難,需要引導(dǎo)學(xué)生應(yīng)用待定系數(shù)法確定圓心坐標(biāo)和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓。第三個小題解決方法較多,我預(yù)設(shè)了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng)設(shè)了空間。最后我讓學(xué)生由第三小題的結(jié)論進(jìn)行歸納、猜想,在論證經(jīng)過圓上一點圓的切線方程的過程中,又一次模擬了真理發(fā)現(xiàn)的過程,使探究氣氛達(dá)到高潮。
III、實際應(yīng)用 回歸自然
問題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0。01m)。
我選用了教材的例3,它是待定系數(shù)法求出圓的三個參數(shù)的又一次應(yīng)用,同時也與引例相呼應(yīng),使學(xué)生形成解決實際問題的一般方法,培養(yǎng)了學(xué)生建模的習(xí)慣和用數(shù)學(xué)的意識。
(四)反饋訓(xùn)練——形成方法
問題六 1、求過原點和點,且圓心在直線上的圓的標(biāo)準(zhǔn)方程。
2、求圓過點的切線方程。
3、求圓過點的切線方程。
接下來是第四環(huán)節(jié)——反饋訓(xùn)練。這一環(huán)節(jié)中,我設(shè)計三個小題作為鞏固性訓(xùn)練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗學(xué)習(xí)數(shù)學(xué)的樂趣,成功的喜悅,找到自信,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的愿望與信心。另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學(xué)生剛剛歸納了過圓上一點圓的切線方程,因此很容易產(chǎn)生思維的負(fù)遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時引導(dǎo)學(xué)生用數(shù)形結(jié)合的思想,結(jié)合初中已有的圓的知識進(jìn)行判斷,這樣的設(shè)計對培養(yǎng)學(xué)生思維的嚴(yán)謹(jǐn)性具有良好的效果。
(五)小結(jié)反思——拓展引申
1、課堂小結(jié)
把圓的標(biāo)準(zhǔn)方程與過圓上一點圓的切線方程加以小結(jié),提煉數(shù)形結(jié)合的思想和待定系數(shù)的方法
、賵A心為,半徑為r 的圓的標(biāo)準(zhǔn)方程為:
圓心在原點時,半徑為r 的圓的標(biāo)準(zhǔn)方程為:。
、谝阎獔A的方程是,經(jīng)過圓上一點的切線的方程是:。
2、分層作業(yè)
(A)鞏固型作業(yè):教材P81-82:(習(xí)題7。6)1,2,4。(B)思維拓展型作業(yè):試推導(dǎo)過圓上一點的切線方程。
3、激發(fā)新疑
問題七 1、把圓的標(biāo)準(zhǔn)方程展開后是什么形式?
2、方程表示什么圖形?
在本課的結(jié)尾設(shè)計這兩個問題,作為對這節(jié)課內(nèi)容的鞏固與延伸,讓學(xué)生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產(chǎn)生了。在知識的拓展中再次掀起學(xué)生探究的熱情。另外它為下節(jié)課研究圓的一般方程作了重要的準(zhǔn)備。
以上是我縱向的教學(xué)過程及簡單的設(shè)計意圖,接下來,我從三個方面橫向的進(jìn)一步闡述我的教學(xué)設(shè)計:
橫向闡述教學(xué)設(shè)計
(一)突出重點 抓住關(guān)鍵 突破難點
求圓的標(biāo)準(zhǔn)方程既是本節(jié)課的教學(xué)重點也是難點,為此我布設(shè)了由淺入深的學(xué)習(xí)環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,逐步理解三個參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點的同時突破了難點。
第二個教學(xué)難點就是解決實際應(yīng)用問題,這是學(xué)生固有的難題,主要是因為應(yīng)用問題的題目冗長,學(xué)生很難根據(jù)問題情境構(gòu)建數(shù)學(xué)模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時我借助多媒體課件的演示,引導(dǎo)學(xué)生真正走入問題的情境之中,并從中抽象出數(shù)學(xué)模型,從而消除畏難情緒,增強(qiáng)了信心。最后再形成應(yīng)用圓的標(biāo)準(zhǔn)方程解決實際問題的一般模式,并嘗試應(yīng)用該模式分析和解決第二個應(yīng)用問題——問題五。這樣的設(shè)計,使學(xué)生在解決問題的同時,形成了方法,難點自然突破。
(二)學(xué)生主體 教師主導(dǎo) 探究主線
本節(jié)課的設(shè)計用問題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動貫穿始終。從圓的標(biāo)準(zhǔn)方程的推導(dǎo)到應(yīng)用都是在問題的指引、我的指導(dǎo)下,由學(xué)生探究完成的。另外,我重點設(shè)計了兩次思維發(fā)散點,分別是問題二和問題四的第三問,要求學(xué)生分組討論,合作交流,為學(xué)生設(shè)立充分的探究空間,學(xué)生在交流成果的過程中,既體驗了科學(xué)研究和真理發(fā)現(xiàn)的復(fù)雜與艱辛,又在我的適度引導(dǎo)、側(cè)面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅(qū)動下,高效的完成本節(jié)的學(xué)習(xí)任務(wù)。
(三)培養(yǎng)思維 提升能力 激勵創(chuàng)新
為了培養(yǎng)學(xué)生的理性思維,我分別在問題一和問題四中,設(shè)計了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力。在問題的設(shè)計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強(qiáng)知識間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時對所學(xué)知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行。
以上是我對這節(jié)課的教學(xué)預(yù)設(shè),具體的教學(xué)過程還要根據(jù)學(xué)生在課堂中的具體情況適當(dāng)調(diào)整,向生成性課堂進(jìn)行轉(zhuǎn)變。最后我以赫爾巴特的一句名言結(jié)束我的說課,發(fā)揮我們的創(chuàng)造性,力爭“使教育過程成為一種藝術(shù)的事業(yè)”。
高中數(shù)學(xué)說課稿 篇8
一、教材分析
(一)地位與作用
《冪函數(shù)》選自高一數(shù)學(xué)新教材必修1第2章第3節(jié)。是基本初等函數(shù)之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。從教材的整體安排看,學(xué)習(xí)了解冪函數(shù)是為了讓學(xué)生進(jìn)一步獲得比較系統(tǒng)的函數(shù)知識和研究函數(shù)的方法,為今后學(xué)習(xí)三角函數(shù)等其他函數(shù)打下良好的基礎(chǔ).在初中曾經(jīng)研究過y=x,y=x2,y=x—1三種冪函數(shù)。這節(jié)內(nèi)容,是對初中有關(guān)內(nèi)容的進(jìn)一步的概括、歸納與發(fā)展,是與冪有關(guān)知識的高度升華.本節(jié)內(nèi)容之后, 將把指數(shù)函數(shù),對數(shù)函數(shù),冪函數(shù)科學(xué)的組織起來,體現(xiàn)充滿在整個數(shù)學(xué)中的組織化,系統(tǒng)化的精神。讓學(xué)生了解系統(tǒng)研究一類函數(shù)的方法.這節(jié)課要特別讓學(xué)生去體會研究的方法,以便能將該方法遷移到對其他函數(shù)的研究.
(二)學(xué)情分析
。1)學(xué)生已經(jīng)接觸的函數(shù),確立利用函數(shù)的定義域、值域、奇偶性、單調(diào)性研究一個函數(shù)的意識 ,已初步形成對數(shù)學(xué)問題的合作探究能力。
。2)雖然前面學(xué)生已經(jīng)學(xué)會用描點畫圖的方法來繪制指數(shù)函數(shù),對數(shù)函數(shù)圖像,但是對于冪函數(shù)的圖像畫法仍然缺乏感性認(rèn)識。
(3)學(xué)生層次參差不齊,個體差異比較明顯。
二、目標(biāo)分析
新課標(biāo)指出“三維目標(biāo)”是一個密切聯(lián)系的有機(jī)整體。
(一)教學(xué)目標(biāo)
(1)知識與技能
、偈箤W(xué)生理解冪函數(shù)的概念,會畫冪函數(shù)的圖象。
、谧寣W(xué)生結(jié)合這幾個冪函數(shù)的圖象,理解冪函圖象的變化情況和性質(zhì)。
(2)過程與方法
、僮寣W(xué)生通過觀察、總結(jié)冪函數(shù)的性質(zhì),培養(yǎng)學(xué)生概括抽象和識圖能力。
②使學(xué)生領(lǐng)會數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力。
(3)情感態(tài)度與價值觀
、偻ㄟ^熟悉的例子讓學(xué)生消除對冪函數(shù)的陌生感從而引出概念,引起學(xué)生注意,激發(fā)學(xué)生的學(xué)習(xí)興趣。
、诶枚嗝襟w,了解冪函數(shù)圖象的變化規(guī)律,使學(xué)生認(rèn)識到現(xiàn)代技術(shù)在數(shù)學(xué)認(rèn)知過程中的作用,從而激發(fā)學(xué)生的學(xué)習(xí)欲望。
③培養(yǎng)學(xué)生從特殊歸納出一般的意識,培養(yǎng)學(xué)生利用圖像研究函數(shù)奇偶性的能力。并引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)中的對稱美,讓學(xué)生在畫圖與識圖中獲得學(xué)習(xí)的快樂。
(二)重點難點
根據(jù)我對本節(jié)課的內(nèi)容的理解,我將重難點定為:
重點:從五個具體的冪函數(shù)中認(rèn)識概念和性質(zhì)
難點:從冪函數(shù)的圖象中概括其性質(zhì)。
三、教法、學(xué)法分析
(一)教法
教學(xué)過程是教師和學(xué)生共同參與的過程,教師要善于啟發(fā)學(xué)生自主性學(xué)習(xí),充分調(diào)動學(xué)生的積極性、主動性,要有效地滲透數(shù)學(xué)思想方法,努力去提高學(xué)生素質(zhì)。根據(jù)這樣的原則和所要完成的教學(xué)目標(biāo),并為激發(fā)學(xué)生的學(xué)習(xí)興趣,我采用如下的教學(xué)方法。
1、引導(dǎo)發(fā)現(xiàn)比較法
因為有五個冪函數(shù),所以可先通過學(xué)生動手畫出函數(shù)的圖象,觀察它們的解析式和圖象并從式的角度和形的角度發(fā)現(xiàn)異同,并進(jìn)行比較,從而更深刻地領(lǐng)會冪函數(shù)概念以及五個冪函數(shù)的圖象與性質(zhì)。
2、借助信息技術(shù)輔助教學(xué)
由于多媒體信息技術(shù)能具有形象生動易吸引學(xué)生注意的特點,故此,可用多媒體制作引入情境,將學(xué)生引到這節(jié)課的學(xué)習(xí)中來。再利用《幾何畫板》畫出五個冪函數(shù)的圖象,為學(xué)生創(chuàng)設(shè)豐富的數(shù)形結(jié)合環(huán)境,幫助學(xué)生更深刻地理解冪函數(shù)概念以及在冪函數(shù)中指數(shù)的變化對函數(shù)圖象形狀和單調(diào)性的影響,并由此歸納冪函數(shù)的性質(zhì)。
3、練習(xí)鞏固討論學(xué)習(xí)法
這樣更能突出重點,解決難點,使學(xué)生既能夠進(jìn)行深入地獨立思考又能與同學(xué)進(jìn)行廣泛的交流與合作,這樣一來學(xué)生對這五個冪函數(shù)領(lǐng)會得會更加深刻,在這個過程中學(xué)生們分析問題和解決問題的能力得到進(jìn)一步的提高,班級整體學(xué)習(xí)氛氛圍也變得更加濃厚。
。ǘ⿲W(xué)法
本節(jié)課主要是通過對冪函數(shù)模型的特征進(jìn)行歸納,動手探索冪函數(shù)的圖像,觀察發(fā)現(xiàn)其有關(guān)性質(zhì),再改變觀察角度發(fā)現(xiàn)奇偶函數(shù)的特征。重在動手操作、觀察發(fā)現(xiàn)和歸納的過程。
由于冪函數(shù)在第一象限的特征是學(xué)生不容易發(fā)現(xiàn)的問題,因此在教學(xué)過程中引導(dǎo)學(xué)生將抽象問題具體化,借助多媒體進(jìn)行動態(tài)演化,以形成較完整的知識結(jié)構(gòu)。
四、教學(xué)過程分析
(一)教學(xué)過程設(shè)計
。1)創(chuàng)設(shè)情境,提出問題。 新課標(biāo)指出:“應(yīng)該讓學(xué)生在具體生動的情境中學(xué)習(xí)數(shù)學(xué)”。在本節(jié)課的教學(xué)中,從我們熟悉的生活情境中提出問題,問題的設(shè)計改變了傳統(tǒng)目的明確的設(shè)計方式,給學(xué)生最大的思考空間,充分體現(xiàn)學(xué)生主體地位。
問題1:下列問題中的函數(shù)各有什么共同特征?是否為指數(shù)函數(shù)?
由學(xué)生討論,總結(jié),即可得出:p=w,s=a2,v=a,a=s1/2,v=t—1
這時學(xué)生觀察可能有些困難,老師提示可以用x表示自變量,用y表示函數(shù)值,上述函數(shù)式變成:
都是自變量的若干次冪的形式。都是形如
的函數(shù)。
揭示課題:今天這節(jié)課,我們就來研究:冪函數(shù)
(一)課堂主要內(nèi)容
。1)冪函數(shù)的概念
①冪函數(shù)的定義。
一般地,函數(shù)
叫做冪函數(shù),其中x 是自變量,a是常數(shù)。
②冪函數(shù)與指數(shù)函數(shù)之間的區(qū)別。
冪函數(shù)——底數(shù)是自變量,指數(shù)是常數(shù);
指數(shù)函數(shù)——指數(shù)是自變量,底數(shù)是常數(shù)。
。2)幾個常見冪函數(shù)的圖象和性質(zhì)
由同學(xué)們畫出下列常見的冪函數(shù)的圖象,并根據(jù)圖象將發(fā)現(xiàn)的性質(zhì)填入表格
根據(jù)上表的內(nèi)容并結(jié)合圖象,總結(jié)函數(shù)的共同性質(zhì)。讓學(xué)生交流,老師結(jié)合學(xué)生的回答組織學(xué)生總結(jié)出性質(zhì)。
以上問題的設(shè)計意圖:數(shù)形結(jié)合是一個重要的數(shù)學(xué)思想方法,它包含以數(shù)助形,和以形助數(shù)的思想。通過問題設(shè)計讓學(xué)生著手實際,借助行的生動來闡明冪函數(shù)的性質(zhì)。
教師講評:冪函數(shù)的性質(zhì).
、偎械膬绾瘮(shù)在(0,+∞)上都有定義,并且圖像都過點(1,1).
②如果a>0,則冪函數(shù)的圖像通過原點,并在區(qū)間〔0,+∞)上是增函數(shù).
③如果a<0,則冪函數(shù)在(0,+∞)上是減函數(shù),在第一象限內(nèi),當(dāng)x從右邊趨向于原點時,圖像在y軸右方無限地趨近y軸;當(dāng)x趨向于+∞時,圖像在x軸上方無限地趨近x軸.
、墚(dāng)a為奇數(shù)時,冪函數(shù)為奇函數(shù);當(dāng)a為偶數(shù)時,冪函數(shù)為偶函數(shù)。
以問題設(shè)計為主,通過問題,讓學(xué)生由已經(jīng)學(xué)過的指數(shù)函數(shù),對數(shù)函數(shù),描點作圖得到五個冪函數(shù)的圖像,但是我們應(yīng)該知道繪制冪函數(shù)的圖像比繪制指數(shù)函數(shù)和對數(shù)函數(shù)的圖像更為復(fù)雜,因為冪函數(shù)隨著冪指數(shù)的輕微變化會出現(xiàn)較大的變化,因此,在描點作圖之前,應(yīng)引導(dǎo)學(xué)生對幾個特殊的冪函數(shù)的性質(zhì)先進(jìn)行初步的探究,如分析函數(shù)的定義域,奇偶性等,在根據(jù)研究結(jié)果和描點作圖畫出圖像,讓學(xué)生觀察所作圖像特征,并由圖象特征得到相應(yīng)的函數(shù)性質(zhì),讓學(xué)生充分體會系統(tǒng)的研究方法。同時學(xué)生對于歸納性質(zhì)這一環(huán)節(jié)相對指數(shù)函數(shù),對數(shù)函數(shù)的性質(zhì),學(xué)生會有更大的困難。因此,教學(xué)中只須對他們的圖像與基本性質(zhì)進(jìn)行認(rèn)識,而不必在一般冪函數(shù)上作過多的引申和介紹。在教學(xué)中,采用從具體到一般,再從一般到具體的安排。
通過學(xué)生的主體參與,使學(xué)生深切體會到本節(jié)課的主要內(nèi)容和思想方法,從而實現(xiàn)對知識識的再次深化。
(3)當(dāng)堂訓(xùn)練,鞏固深化
例題和練習(xí)題的選取應(yīng)結(jié)合學(xué)生認(rèn)知探究,鞏固本節(jié)課的重點知識,并能用知識加以運用。本節(jié)課選取主要選取了兩道例題。
例1是課本上的例題:證明f(x)=x1/2在(0,+∞)上是增函數(shù)。這題先從“形”的角度判斷函數(shù)的單調(diào)區(qū)間和單調(diào)性,再用到定義從“數(shù)”的角度對函數(shù)的單調(diào)性進(jìn)行推理論證,培養(yǎng)學(xué)生的數(shù)形結(jié)合的數(shù)學(xué)思想和解決問題的專業(yè)素養(yǎng)。
例2是補充例題,主要培養(yǎng)學(xué)生根據(jù)體例構(gòu)造出函數(shù),并利用函數(shù)的性質(zhì)來解決問題的能力,從而加深學(xué)生對冪函數(shù)及其性質(zhì)的理解。注意:由于學(xué)生對冪函數(shù)還不是很熟悉,所以在講評中要刻意體現(xiàn)出冪函數(shù)y=x1。3是增函數(shù)與y=x—5/4的圖像的畫法,即再一次讓學(xué)生體會根據(jù)解析式來畫圖像解題這一基本思路
。4)小結(jié)歸納,回顧反思。 小結(jié)歸納不僅是對知識的簡單回顧,還要發(fā)揮學(xué)生的主體地位,從知識、方法、經(jīng)驗等方面進(jìn)行總結(jié)。我設(shè)計了三個問題:
。1)通過本節(jié)課的學(xué)習(xí),你學(xué)到了哪些知識?
(2)通過本節(jié)課的學(xué)習(xí),你最大的體驗是什么?
。3)通過本節(jié)課的學(xué)習(xí),你掌握了哪些技能?
(二)作業(yè)設(shè)計 作業(yè)分為必做題和選做題,必做題對本節(jié)課學(xué)生知識水平的反饋,選做題是對本節(jié)課內(nèi)容的延伸與,注重知識的延伸與連貫,強(qiáng)調(diào)學(xué)以致用。通過作業(yè)設(shè)置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,促進(jìn)學(xué)生自主發(fā)展、合作探究的學(xué)習(xí)氛圍的形成. 我設(shè)計了以下作業(yè):
。1)必做題
。2)選做題
。ㄈ┌鍟O(shè)計
板書要基本體現(xiàn)整堂課的內(nèi)容與方法,體現(xiàn)課堂進(jìn)程,能簡明扼要反映知識結(jié)構(gòu)及其相互聯(lián)系;能指導(dǎo)教師的教學(xué)進(jìn)程、引導(dǎo)學(xué)生探索知識;通過使用幻燈片輔助板書,節(jié)省課堂時間,使課堂進(jìn)程更加連貫。
五、評價分析
學(xué)生學(xué)習(xí)的結(jié)果評價當(dāng)然重要,但是更重要的是學(xué)生學(xué)習(xí)的過程評價。我采用及時點評、延時點評與學(xué)生互評相結(jié)合,全面考查學(xué)生在知識、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過程中,評價學(xué)生是否有積極的情感態(tài)度和頑強(qiáng)的理性精神,在概念反思過程中評價學(xué)生的歸納猜想能力是否得到發(fā)展,通過鞏固練習(xí)考查學(xué)生對冪函數(shù)是否有一個完整的集訓(xùn),并進(jìn)行及時的調(diào)整和補充。 以上就是我對本節(jié)課的理解和設(shè)計,敬請各位專家、評委批評指正。
謝謝!
【精選高中數(shù)學(xué)說課稿模板合集八篇】相關(guān)文章:
精選高中數(shù)學(xué)說課稿模板合集六篇08-02
精選高中數(shù)學(xué)說課稿模板合集五篇07-18
關(guān)于高中數(shù)學(xué)說課稿模板合集九篇07-30