久久久久无码精品,四川省少妇一级毛片,老老熟妇xxxxhd,人妻无码少妇一区二区

高中數(shù)學(xué)說課稿

時(shí)間:2021-08-10 10:02:15 高中說課稿 我要投稿

實(shí)用的高中數(shù)學(xué)說課稿范文合集9篇

  作為一位無私奉獻(xiàn)的人民教師,時(shí)常需要編寫說課稿,說課稿可以幫助我們提高教學(xué)效果。那么說課稿應(yīng)該怎么寫才合適呢?下面是小編幫大家整理的高中數(shù)學(xué)說課稿9篇,歡迎大家借鑒與參考,希望對大家有所幫助。

實(shí)用的高中數(shù)學(xué)說課稿范文合集9篇

高中數(shù)學(xué)說課稿 篇1

  函數(shù)的單調(diào)性

  今天我說課的題目是《函數(shù)的單調(diào)性》,下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個(gè)問題,從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、教學(xué)過程五方面逐一加以分析和說明。

  一、說教材

  1、教材的地位和作用

  本節(jié)內(nèi)容選自北師大版高中數(shù)學(xué)必修1,第二章第3節(jié)。函數(shù)是高中數(shù)學(xué)的課程,它是描述事物運(yùn)動(dòng)變化的模型,而函數(shù)的單調(diào)性是函數(shù)的一大特征,它為我們之后的學(xué)習(xí)奠定重要基礎(chǔ)。

  2、學(xué)情分析

  本節(jié)課的學(xué)生是高一學(xué)生,他們在初中階段,通過一次函數(shù)、二次函數(shù)、反比例函數(shù)的學(xué)習(xí)已經(jīng)對函數(shù)的增減性有了初步的感性認(rèn)識。在高中階段,用符號語言刻畫圖形語言,用定量分析解釋定性結(jié)果,有利于培養(yǎng)學(xué)生的理性思維,為后續(xù)函數(shù)的學(xué)習(xí)作準(zhǔn)備,也為利用倒數(shù)研究單調(diào)性的相關(guān)知識奠定了基礎(chǔ)。

  教學(xué)目標(biāo)分析

  基于以上對教材和學(xué)情的分析以及新課標(biāo)教學(xué)理念,我將教學(xué)目標(biāo)分為以下三個(gè)部分:

  1.知識與技能(1)理解函數(shù)的單調(diào)性和單調(diào)函數(shù)的意義;

 。2)會判斷和證明簡單函數(shù)的單調(diào)性。

  2.過程與方法

  (1)培養(yǎng)從概念出發(fā),進(jìn)一步研究性質(zhì)的意識及能力;

 。2)體會數(shù)形結(jié)合、分類討論的數(shù)學(xué)思想。

  3.情感態(tài)度與價(jià)值觀

  由合適的例子引發(fā)學(xué)生探求數(shù)學(xué)知識的欲望,突出學(xué)生的主觀能動(dòng)性,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

  三、教學(xué)重難點(diǎn)分析

  通過以上對教材和學(xué)生的分析以及教學(xué)目標(biāo),我將本節(jié)課的重難點(diǎn)

  重點(diǎn):

  函數(shù)單調(diào)性的概念,判斷和證明簡單函數(shù)的單調(diào)性。

  難點(diǎn):

  1.函數(shù)單調(diào)性概念的認(rèn)知

 。1)自然語言到符號語言的轉(zhuǎn)化;

 。2)常量到變量的轉(zhuǎn)化。

  2.應(yīng)用定義證明單調(diào)性的代數(shù)推理論證。

  四、教法與學(xué)法分析

  1、教法分析

  基于以上對教材、學(xué)情的分析以及新課標(biāo)的教學(xué)理念,本節(jié)課我采用啟發(fā)式教學(xué)、多媒體輔助教學(xué)和討論法。學(xué)生可以在多媒體中感受到數(shù)學(xué)在生活中的應(yīng)用,啟發(fā)式教學(xué)和討論法發(fā)散學(xué)生思維,培養(yǎng)學(xué)生善于思考的能力。

  2、學(xué)法分析

  新課改理念告訴我們,學(xué)生不僅要學(xué)知識,更重要的是要學(xué)會怎樣學(xué)習(xí),為終生學(xué)習(xí)奠定扎實(shí)的基礎(chǔ)。所以本節(jié)課我將引導(dǎo)學(xué)生通過合作交流、自主探索的方法理解函數(shù)的單調(diào)性及特征。

  五、教學(xué)過程

  為了更好的實(shí)現(xiàn)本課的三維目標(biāo),并突破重難點(diǎn),我設(shè)計(jì)以下五個(gè)環(huán)節(jié)來進(jìn)行我的教學(xué)。

 。ㄒ唬┲R導(dǎo)入

  溫故而知新,我將先從之前學(xué)習(xí)的知識引入,給出一些函數(shù),比如y=x、y=-x、y=|x|,讓學(xué)生作出這些函數(shù)的圖像,然后讓學(xué)生討論這些函數(shù)圖像是上升的還是下降的,由此引入到我的新課。在這個(gè)過程中不僅可以檢查學(xué)生掌握基本初等函數(shù)圖像的情況,而且符合學(xué)生的認(rèn)知結(jié)構(gòu),通過學(xué)生自主探究,從知識產(chǎn)生、發(fā)展的過程中構(gòu)建新概念,有利于激發(fā)學(xué)生的思維和學(xué)習(xí)的積極主動(dòng)性。

 。ǘ┲v授新課

  1.問題:分別做出函數(shù)y=x2,y=x+2的圖像,指出上面的函數(shù)圖象在哪個(gè)區(qū)間是上升的,在哪個(gè)區(qū)間是下降的?

  通過學(xué)生熟悉的圖像,及時(shí)引導(dǎo)學(xué)生觀察,函數(shù)圖像上A點(diǎn)的運(yùn)動(dòng)情況,引導(dǎo)學(xué)生能用自然語言描述出,隨著x增大時(shí)圖像變化規(guī)律。讓學(xué)生大膽的去說,老師逐步修正、完善學(xué)生的說法,最后給出正確答案。

  2.觀察函數(shù)y=x2隨自變量x變化的情況,設(shè)置啟發(fā)式問題:

  (1)在y軸的右側(cè)部分圖象具有什么特點(diǎn)?

  (2)如果在y軸右側(cè)部分取兩個(gè)點(diǎn)(x1,y1),(x2,y2),當(dāng)x1

 。3)如何用數(shù)學(xué)符號語言來描述這個(gè)規(guī)律?

  教師補(bǔ)充:這時(shí)我們就說函數(shù)y=x2在(0,+∞)上是增函數(shù)。

 。4)反過來,如果y=f(x)在(0,+∞)上是增函數(shù),我們能不能得到自變量與函數(shù)值的變化規(guī)律呢?

  類似地分析圖象在y軸的左側(cè)部分。

  通過對以上問題的分析,從正、反兩方面領(lǐng)會函數(shù)單調(diào)性。師生共同總結(jié)出單調(diào)增函數(shù)的定義,并解讀定義中的關(guān)鍵詞,如:區(qū)間內(nèi),任意,當(dāng)x1

  仿照單調(diào)增函數(shù)定義,由學(xué)生說出單調(diào)減函數(shù)的定義。

  教師總結(jié)歸納單調(diào)性和單調(diào)區(qū)間的定義。注意強(qiáng)調(diào):函數(shù)的單調(diào)性是函數(shù)在定義域某個(gè)區(qū)間上的局部性質(zhì),也就是說,一個(gè)函數(shù)在不同的區(qū)間上可以有不同的單調(diào)性。

  (我將給出函數(shù)y=x2,并畫出這個(gè)函數(shù)的圖像,讓學(xué)生觀察函數(shù)圖像的特點(diǎn),讓他們描述函數(shù)圖像的增減性,慢慢得到函數(shù)單調(diào)性的概念。在這個(gè)過程中,學(xué)生把對圖像的感性認(rèn)識轉(zhuǎn)化為了數(shù)學(xué)關(guān)系,這種從特殊到一般的學(xué)習(xí)過程有利于學(xué)生對概念的理解)

 。ㄈ╈柟叹毩(xí)

  1練習(xí)1:說出函數(shù)f(x)=的單調(diào)區(qū)間,并指明在該區(qū)間上的單調(diào)性。x

  練習(xí)2:練習(xí)2:判斷下列說法是否正確

  ①定義在R上的函數(shù)f(x)滿足f(2)>f(1),則函數(shù)是R上的增函數(shù)。

 、诙x在R上的函數(shù)f(x)滿足f(2)>f(1),則函數(shù)是R上不是減函數(shù)。

  1③已知函數(shù)y=,因?yàn)閒(-1)

  1我將給出一些具體的函數(shù),如y=,f(x)=3x+2讓學(xué)生說出函數(shù)的單調(diào)區(qū)間,并指明在該區(qū)間x

  上的單調(diào)性。通過這種練習(xí)的方式,幫助學(xué)生鞏固對知識的掌握。

 。ㄋ模w納總結(jié)

  我先讓學(xué)生進(jìn)行小結(jié),函數(shù)單調(diào)性定義,判斷函數(shù)單調(diào)性的方法(圖像、定義),然后教師進(jìn)行補(bǔ)充,在這樣一個(gè)過程中既有利于學(xué)生鞏固知識,也有利于教師對學(xué)生的學(xué)習(xí)情況有一定的了解,為下一節(jié)課的教學(xué)過程做好準(zhǔn)備。

 。ㄎ澹┎贾米鳂I(yè)

  必做題:習(xí)題2-3A組第2,4,5題。

  選做題:習(xí)題2-3B組第2題。

  新課程理念告訴我們,不同的人在數(shù)學(xué)上可以獲得不同的發(fā)展,因此要設(shè)計(jì)不同程度要求的習(xí)題。

  篇二:高一數(shù)學(xué)必修一說課稿

  二次函數(shù)的圖像說課稿

  今天我說課的題目是《二次函數(shù)的圖像》,下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個(gè)問題,從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、課堂設(shè)計(jì)五方面逐一加以分析和說明。

  一、教材分析

  教材的地位和作用

  本節(jié)內(nèi)容選自北師大版高中數(shù)學(xué)必修1,第二章第4.1節(jié)。二次函數(shù)的圖像在教材中起著承上啟下的作用。

  學(xué)情分析

  本節(jié)課的學(xué)生是高一學(xué)生,他們在初中的時(shí)候已經(jīng)學(xué)習(xí)過有關(guān)內(nèi)容,為本節(jié)課的學(xué)習(xí)打下了基礎(chǔ),另一方面,二次函數(shù)解析式中的系數(shù)由常數(shù)轉(zhuǎn)變?yōu)閰?shù),使學(xué)生對二次函數(shù)的圖像由感性認(rèn)識上升到理性認(rèn)識,能培養(yǎng)學(xué)生利用數(shù)形結(jié)合思想解決問題的能力。

  二、教學(xué)目標(biāo)分析

  基于以上對教材和學(xué)情的分析以及新課標(biāo)教學(xué)理念,我將教學(xué)目標(biāo)分為以下三個(gè)部分:

  1.知識與技能

  理解二次函數(shù)中參數(shù)a,b,c,h,k對其圖像的影響;

  2.過程與方法

  通過體驗(yàn)對二次函數(shù)圖像平移的研究方法,能遷移到其他函數(shù)圖像的研究。

  3.情感態(tài)度與價(jià)值觀

  通過本節(jié)的學(xué)習(xí),進(jìn)一步體會數(shù)形結(jié)合思想的作用,感受到數(shù)學(xué)中數(shù)與形的辯證統(tǒng)一。

  三、教學(xué)重難點(diǎn)分析

  通過以上對教材和學(xué)生的分析以及教學(xué)目標(biāo),我將本節(jié)課的重難點(diǎn)確定如下

  重點(diǎn):

  二次函數(shù)圖像的平移變換規(guī)律及應(yīng)用。

  難點(diǎn):

  探索平移對函數(shù)解析式的影響及如何利用平移變換規(guī)律求函數(shù)解析式,并能把平移變換規(guī)律遷移到其他函數(shù)。

  四、教法與學(xué)法分析

  1、教法分析

  基于以上對教材、學(xué)情的分析以及新課改的要求,本節(jié)課我采用啟發(fā)式教學(xué)、多媒體輔助教學(xué)和討論法。學(xué)生可以在多媒體中感受到數(shù)學(xué)在生活中的應(yīng)用,啟發(fā)式教學(xué)和討論法發(fā)散學(xué)生思維,培養(yǎng)學(xué)生善于思考的能力。

  2、學(xué)法分析

  新課改理念告訴我們,學(xué)生不僅要學(xué)知識,更重要的是要學(xué)會怎樣學(xué)習(xí),為終生學(xué)習(xí)奠定扎實(shí)的基礎(chǔ)。所以本節(jié)課我將引導(dǎo)學(xué)生通過合作交流、自主探索的方法進(jìn)行學(xué)習(xí)。

  五、教學(xué)過程

  為了更好的實(shí)現(xiàn)本課的三維目標(biāo),并突破重難點(diǎn),我將設(shè)計(jì)以下五個(gè)環(huán)節(jié)來進(jìn)行我的教學(xué)。

 。1)知識導(dǎo)入

  溫故而知新,我將先從之前學(xué)習(xí)的知識引入,給出一些函數(shù),比如y=x2、y=2x2,讓學(xué)生作出這些函數(shù)的圖像,然后讓學(xué)生比較這些函數(shù)圖像的相同點(diǎn)和不同點(diǎn),由此引入我的新課。一方面讓學(xué)生總結(jié)復(fù)習(xí)已有知識,為后面的學(xué)習(xí)做好鋪墊,另一方面,使學(xué)生在自己熟悉的問題中首先獲得解題成功的快樂體驗(yàn)。

 。2)講授新課

  例1:畫出函數(shù)y=2x2,y=2(x+1)2,y=2(x+1)2+3的圖像

  讓學(xué)生畫出他們的圖像并觀察函數(shù)圖像的特點(diǎn),再讓學(xué)生與多媒體課件展示的圖像進(jìn)行對比,得出結(jié)論:若二次函數(shù)的解析式為y=ax2+bx+c,先將其化成y=a(x+h)2+k的形式,從而判斷出y=ax2+bx+c是如何由y=ax2變換得到的。

  前面的練習(xí)和例題,基本涵蓋了二次函數(shù)圖像平移變換的各種情況,啟發(fā)并引導(dǎo)了學(xué)生將實(shí)例的結(jié)論進(jìn)行總結(jié),得出y=x2到y(tǒng)=ax2,y=ax2到y(tǒng)=a(x+h)2+k,y=ax2到y(tǒng)=ax2+bx+c(其中,a均不為0)的圖像變化過程,即a>0開口向上,a<0開口向下;h正左移,h負(fù)右移;k正上移,k負(fù)下移。在這個(gè)過程中,學(xué)生把對圖像的感性認(rèn)識轉(zhuǎn)化為了數(shù)學(xué)關(guān)系,這種從特殊到一般的學(xué)習(xí)過程有利于學(xué)生對概念的理解,

 。3)鞏固練習(xí)

  我將組織學(xué)生進(jìn)行練習(xí),完成課本44頁1-3題。通過這種練習(xí)的方式,幫助學(xué)生鞏固和加深二次函數(shù)中參數(shù)對圖像的影響。

 。4)歸納總結(jié)

  我先讓學(xué)生進(jìn)行小結(jié),然后教師進(jìn)行補(bǔ)充,在這樣一個(gè)過程中既有利于學(xué)生鞏固知識,也有利于教師對學(xué)生的學(xué)習(xí)情況有一定的了解,可以進(jìn)行適當(dāng)反思,為下一節(jié)課的教學(xué)過程做好準(zhǔn)備。

 。5)布置作業(yè)

  略

高中數(shù)學(xué)說課稿 篇2

  各位評委老師好:今天我說課的題目是

  是必修章第節(jié)的內(nèi)容,我將以新課程標(biāo)準(zhǔn)的理念指導(dǎo)本節(jié)課的教學(xué),從教材分析,教法學(xué)法,教學(xué)過程,教學(xué)評價(jià)四個(gè)方面加以說明。

  一、 教材分析

  是在學(xué)習(xí)了基礎(chǔ)上進(jìn)一步研究 并為后面學(xué)習(xí) 做準(zhǔn)備,在整個(gè)

  高中數(shù)學(xué)中起著承上啟下的作用,因此本節(jié)內(nèi)容十分重要。

  根據(jù)新課標(biāo)要求和學(xué)生實(shí)際水平我制定以下教學(xué)目標(biāo)

  1、 知識能力目標(biāo):使學(xué)生理解掌握

  2、 過程方法目標(biāo):通過觀察歸納抽象概括使學(xué)生構(gòu)建領(lǐng)悟 數(shù)學(xué)思想,培養(yǎng) 能力

  3、 情感態(tài)度價(jià)值觀目標(biāo):通過學(xué)習(xí)體驗(yàn)數(shù)學(xué)的科學(xué)價(jià)值和應(yīng)用價(jià)值,培養(yǎng)善于

  觀察勇于思考的學(xué)習(xí)習(xí)慣和嚴(yán)謹(jǐn) 的科學(xué)態(tài)度

  根據(jù)教學(xué)目標(biāo)、本節(jié)特點(diǎn)和學(xué)生實(shí)際情況本節(jié)重點(diǎn)是 ,由于學(xué)生對 缺少感性認(rèn)識,所以本節(jié)課的重點(diǎn)是

  二、教法學(xué)法

  根據(jù)教師主導(dǎo)地位和學(xué)生主體地位相統(tǒng)一的規(guī)律,我采用引導(dǎo)發(fā)現(xiàn)法為本節(jié)課的主要教學(xué)方法并借助多媒體為輔助手段。在教師點(diǎn)撥下,學(xué)生自主探索、合作交流來尋求解決問題的方法。

  三、 教學(xué)過程

  四、 教學(xué)程序及設(shè)想

  1、由……引入:

  把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學(xué)生產(chǎn)生強(qiáng)烈的問題意識,使學(xué)生的整個(gè)學(xué)習(xí)過程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過程。 在實(shí)際情況下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗(yàn),同化和索引出當(dāng)前學(xué)習(xí)的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問題情境中。

  對于本題:……

  2、由實(shí)例得出本課新的知識點(diǎn)是:……

  3、講解例題。

  我們在講解例題時(shí),不僅在于怎樣解,更在于為什么這樣解,而及時(shí)對解題方法和規(guī)律進(jìn)行概括,有利于發(fā)展學(xué)生的思維能力。在題中:

  4、能力訓(xùn)練。

  課后練習(xí)……

  使學(xué)生能鞏固羨慕自覺運(yùn)用所學(xué)知識與解題思想方法。

  5、總結(jié)結(jié)論,強(qiáng)化認(rèn)識。

  知識性內(nèi)容的小結(jié),可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì);數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐漸培養(yǎng)學(xué)生的良好的個(gè)性品質(zhì)目標(biāo)。

  6、變式延伸,進(jìn)行重構(gòu)。

  重視課本例題,適當(dāng)對題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對知識的串聯(lián)、累積、加工,從而達(dá)到舉一反三的效果。

  五、教學(xué)評價(jià)

  學(xué)生學(xué)習(xí)的學(xué)習(xí)結(jié)果評價(jià)當(dāng)然重要,但是更重要的是學(xué)生學(xué)習(xí)的過程評價(jià),教師應(yīng)

  當(dāng)高度重視學(xué)生學(xué)習(xí)過程中的參與度、自信心、團(tuán)隊(duì)精神合作意識數(shù)學(xué)能力的發(fā)現(xiàn),以及學(xué)習(xí)的興趣和成就感。

高中數(shù)學(xué)說課稿 篇3

  說教材:

  1、地位、作用和特點(diǎn):

  《 》是高中數(shù)學(xué)課本第 冊( 修)的第 章“ ”的第 節(jié)內(nèi)容,高中數(shù)學(xué)課本說課稿。

  本節(jié)是在學(xué)習(xí)了 之后編排的。通過本節(jié)課的學(xué)習(xí),既可以對 的知識進(jìn)一步鞏固和深化,又可以為后面學(xué)習(xí) 打下基礎(chǔ),所以是本章的重要內(nèi)容。此外,《 》的知識與我們?nèi)粘I睢⑸a(chǎn)、科學(xué)研究 有著密切的聯(lián)系,因此學(xué)習(xí)這部分有著廣泛的現(xiàn)實(shí)意義。

  教學(xué)目標(biāo):

  根據(jù)《教學(xué)大綱》的要求和學(xué)生已有的知識基礎(chǔ)和認(rèn)知能力,確定以下教學(xué)目標(biāo):

 。1)知識目標(biāo):A、B、C

  (2)能力目標(biāo):A、B、C

 。3)德育目標(biāo):A、B

  教學(xué)的重點(diǎn)和難點(diǎn):

 。1)教學(xué)重點(diǎn):

  (2)教學(xué)難點(diǎn):

  二、說教法:

  基于上面的教材分析,我根據(jù)自己對研究性學(xué)習(xí)“啟發(fā)式”教學(xué)模式和新課程改革的理論認(rèn)識,結(jié)合本校學(xué)生實(shí)際,主要突出了幾個(gè)方面:一是創(chuàng)設(shè)問題情景,充分調(diào)動(dòng)學(xué)生求知欲,并以此來激發(fā)學(xué)生的探究心理。二是運(yùn)用啟發(fā)式教學(xué)方法,就是把教和學(xué)的各種方法綜合起來統(tǒng)一組織運(yùn)用于教學(xué)過程,以求獲得最佳效果。另外還注意獲得和交換信息渠道的綜合、教學(xué)手段的綜合和課堂內(nèi)外的綜合。并且在整個(gè)教學(xué)設(shè)計(jì)盡量做到注意學(xué)生的心理特點(diǎn)和認(rèn)知規(guī)律,觸發(fā)學(xué)生的思維,使教學(xué)過程真正成為學(xué)生的學(xué)習(xí)過程,以思維教學(xué)代替單純的記憶教學(xué)。三是注重滲透數(shù)學(xué)思考方法(聯(lián)想法、類比法、數(shù)形結(jié)合等一般科學(xué)方法)。讓學(xué)生在探索學(xué)習(xí)知識的過程中,領(lǐng)會常見數(shù)學(xué)思想方法,培養(yǎng)學(xué)生的探索能力和創(chuàng)造性素質(zhì)。四是注意在探究問題時(shí)留給學(xué)生充分的時(shí)間,以利于開放學(xué)生的思維。當(dāng)然這就應(yīng)在處理教學(xué)內(nèi)容時(shí)能夠做到葉老師所說“教就是為了不教”。因此,擬對本節(jié)課設(shè)計(jì)如下教學(xué)程序:

  導(dǎo)入新課 新課教學(xué)

  反饋發(fā)展

  三、說學(xué)法:

  學(xué)生學(xué)習(xí)的過程實(shí)際上就是學(xué)生主動(dòng)獲取、整理、貯存、運(yùn)用知識和獲得學(xué)習(xí)能力的過程,因此,我覺得在教學(xué)中,指導(dǎo)學(xué)生學(xué)習(xí)時(shí),應(yīng)盡量避免單純地、直露地向?qū)W生灌輸某種學(xué)習(xí)方法。有效的能被學(xué)生接受的學(xué)法指導(dǎo)應(yīng)是滲透在教學(xué)過程中進(jìn)行的,是通過優(yōu)化教學(xué)程序來增強(qiáng)學(xué)法指導(dǎo)的目的性和實(shí)效性。在本節(jié)課的教學(xué)中主要滲透以下幾個(gè)方面的學(xué)法指導(dǎo)。

  1、培養(yǎng)學(xué)生學(xué)會通過自學(xué)、觀察、實(shí)驗(yàn)等方法獲取相關(guān)知識,使學(xué)生在探索研究過程中分析、歸納、推理能力得到提高。

  本節(jié)教師通過列舉具體事例來進(jìn)行分析,歸納出 ,并依

  據(jù)此知識與具體事例結(jié)合、推導(dǎo)出 ,這正是一個(gè)分析和推理的全過程。

  2、讓學(xué)生親自經(jīng)歷運(yùn)用科學(xué)方法探索的過程。 主要是努力創(chuàng)設(shè)應(yīng)用科學(xué)方法探索、解決問題情境,讓學(xué)生在探索中體會科學(xué)方法,如在講授 時(shí),可通過

  演示,創(chuàng)設(shè)探索 規(guī)律的情境,引導(dǎo)學(xué)生以可靠的事實(shí)為基礎(chǔ),經(jīng)過抽象思維揭示內(nèi)在規(guī)律,從而使學(xué)生領(lǐng)悟到把可靠的事實(shí)和深刻的理論思維結(jié)合起來的特點(diǎn)。

  3、讓學(xué)生在探索性實(shí)驗(yàn)中自己摸索方法,觀察和分析現(xiàn)象,從而發(fā)現(xiàn)“新”的問題或探索出“新”的規(guī)律。從而培養(yǎng)學(xué)生的發(fā)散思維和收斂思維能力,激發(fā)學(xué)生的創(chuàng)造動(dòng)力。在實(shí)踐中要盡可能讓學(xué)生多動(dòng)腦、多動(dòng)手、多觀察、多交流、多分析;老師要給學(xué)生多點(diǎn)撥、多啟發(fā)、多激勵(lì),不斷地尋找學(xué)生思維和操作上的閃光點(diǎn),及時(shí)總結(jié)和推廣。

  4、在指導(dǎo)學(xué)生解決問題時(shí),引導(dǎo)學(xué)生通過比較、猜測、嘗試、質(zhì)疑、發(fā)現(xiàn)等探究環(huán)節(jié)選擇合適的概念、規(guī)律和解決問題方法,從而克服思維定勢的消極影響,促進(jìn)知識的正向遷移。如教師引導(dǎo)學(xué)生對比中,蘊(yùn)含的本質(zhì)差異,從而擺脫知識遷移的負(fù)面影響。這樣,既有利于學(xué)生養(yǎng)成認(rèn)真分析過程、善于比較的好習(xí)慣,又有利于培養(yǎng)學(xué)生通過現(xiàn)象發(fā)掘知識內(nèi)在本質(zhì)的能力。

  四、教學(xué)過程:

  (一)、課題引入:

  教師創(chuàng)設(shè)問題情景(創(chuàng)設(shè)情景:A、教師演示實(shí)驗(yàn)。B、使用多媒體模擬一些比較有趣、與生活實(shí)踐比較有關(guān)的事例。C、講述數(shù)學(xué)科學(xué)史上的有關(guān)情況。)激發(fā)學(xué)生的探究欲望,引導(dǎo)學(xué)生提出接下去要研究的問題。

 。ǘ、新課教學(xué):

  1、針對上面提出的問題,設(shè)計(jì)學(xué)生動(dòng)手實(shí)踐,讓學(xué)生通過動(dòng)手探索有關(guān)的知識,并引導(dǎo)學(xué)生進(jìn)行交流、討論得出新知,并進(jìn)一步提出下面的問題。

  2、組織學(xué)生進(jìn)行新問題的實(shí)驗(yàn)方法設(shè)計(jì)—這時(shí)在設(shè)計(jì)上最好是有對比性、數(shù)學(xué)方法性的設(shè)計(jì)實(shí)驗(yàn),指導(dǎo)學(xué)生實(shí)驗(yàn)、通過多媒體的輔助,顯示學(xué)生的實(shí)驗(yàn)數(shù)據(jù),模擬強(qiáng)化出實(shí)驗(yàn)情況,由學(xué)生分析比較,歸納總結(jié)出知識的結(jié)構(gòu)。

 。ㄈ(shí)施反饋:

  1、課堂反饋,遷移知識(最好遷移到與生活有關(guān)的例子)。讓學(xué)生分析有關(guān)的問題,實(shí)現(xiàn)知識的`升華、實(shí)現(xiàn)學(xué)生的再次創(chuàng)新。

  2、課后反饋,延續(xù)創(chuàng)新。通過課后練習(xí),學(xué)生互改作業(yè),課后研實(shí)驗(yàn),實(shí)現(xiàn)課堂內(nèi)外的綜合,實(shí)現(xiàn)創(chuàng)新精神的延續(xù)。

  五、板書設(shè)計(jì):

  在教學(xué)中我把黑板分為三部分,把知識要點(diǎn)寫在左側(cè),中間知識推導(dǎo)過程,右邊實(shí)例應(yīng)用。

  六、說課綜述:

  以上是我對《 》這節(jié)教材的認(rèn)識和對教學(xué)過程的設(shè)計(jì)。在整個(gè)課堂中,我引導(dǎo)學(xué)生回顧前面學(xué)過的 知識,并把它運(yùn)用到對的認(rèn)識,使學(xué)生的認(rèn)知活動(dòng)逐步深化,既掌握了知識,又學(xué)會了方法。

  總之,對課堂的設(shè)計(jì),我始終在努力貫徹以教師為主導(dǎo),以學(xué)生為主體,以問題為基礎(chǔ),以能力、方法為主線,有計(jì)劃培養(yǎng)學(xué)生的自學(xué)能力、觀察和實(shí)踐能力、思維能力、應(yīng)用知識解決實(shí)際問題的能力和創(chuàng)造能力為指導(dǎo)思想。并且能從各種實(shí)際出發(fā),充分利用各種教學(xué)手段來激發(fā)學(xué)生的學(xué)習(xí)興趣,體現(xiàn)了對學(xué)生創(chuàng)新意識的培養(yǎng)。

高中數(shù)學(xué)說課稿 篇4

  說課目標(biāo)

  (1)知識目標(biāo):掌握拋物線的定義,掌握拋物線的四種標(biāo)準(zhǔn)方程形式,及其對應(yīng)的焦點(diǎn)、準(zhǔn)線。

  (2)能力目標(biāo):通過對拋物線概念和標(biāo)準(zhǔn)方程的學(xué)習(xí),培養(yǎng)學(xué)生分析和概括的能力,提高建立坐標(biāo)系的能力,由圓錐曲線的統(tǒng)一定義,形成學(xué)生對事物運(yùn)動(dòng)變化、對立、統(tǒng)一的辨證唯物主義觀點(diǎn)。

  (3)德育目標(biāo):通過拋物線概念和標(biāo)準(zhǔn)方程的學(xué)習(xí),培養(yǎng)學(xué)生勇于探索、嚴(yán)密細(xì)致的科學(xué)態(tài)度,通過提問、討論、思考等教學(xué)活動(dòng),調(diào)動(dòng)學(xué)生積極參與教學(xué),培養(yǎng)良好的學(xué)習(xí)習(xí)慣。

  教學(xué)重點(diǎn):(1)拋物線的定義及焦點(diǎn)、準(zhǔn)線;

  (2)利用坐標(biāo)法求出拋物線的四種標(biāo)準(zhǔn)方程;

  (3)會根據(jù)拋物線的焦點(diǎn)坐標(biāo),準(zhǔn)線方程求拋物線的標(biāo)準(zhǔn)方程。

  教學(xué)難點(diǎn):(1)拋物線的四種圖形及標(biāo)準(zhǔn)方程的區(qū)分;

  (2)拋物線定義及焦點(diǎn)、準(zhǔn)線等知識的靈活運(yùn)用。

  說課方法:啟發(fā)引導(dǎo)法(通過橢圓與雙曲線第二定義引出拋物線)。

  依據(jù)建構(gòu)主義教學(xué)原理,通過類比、歸納把新知識化歸到原有的認(rèn)知結(jié)構(gòu)中去(二次函數(shù)與拋物線方程的對比,移圖與建立適當(dāng)建立坐標(biāo)系的方法的歸納)。

  利用多媒體教學(xué)

  說課過程:

  一、課題引入

  利用學(xué)生已有知識提問學(xué)生:1、橢圓的第二種定義:到定點(diǎn)與到定直線的距離的比是小于1的常數(shù)的點(diǎn)的軌跡是橢圓。(用課件演示)

  2、雙曲線的第二種定義:到定點(diǎn)與到定直線的距離的比是大于1的常數(shù)的點(diǎn)的軌跡是雙曲線。(用課件演示)

  由此引出:到定點(diǎn)的距離和到定直線的距離的比是等于1的常數(shù)的點(diǎn)的軌跡

  是什么?

  (以問題為出發(fā)點(diǎn),創(chuàng)設(shè)情景,提高學(xué)生求知欲)

  教師用直尺、三角板和細(xì)繩演示,學(xué)生觀察所得曲線。

  從而引出本節(jié)課的學(xué)習(xí)內(nèi)容。

  二、講授新課

  1.對拋物線的初步認(rèn)識

  物理中拋物線的運(yùn)動(dòng)軌跡;數(shù)學(xué)中二次函數(shù)的圖象;生活中拋物線的實(shí)例(圖片顯示)等。

  2.拋物線的定義

  3.拋物線標(biāo)準(zhǔn)方程的推導(dǎo):①學(xué)生回顧求曲線方程的步驟(建系、設(shè)點(diǎn)、列方程);

 、谌艚裹c(diǎn)F和準(zhǔn)線的距離為()這樣建立坐標(biāo)系?由學(xué)生思考:可能出現(xiàn)的結(jié)果:

  四、課堂小結(jié)

  1、本節(jié)課的內(nèi)容:拋物線的定義,焦點(diǎn)、準(zhǔn)線的意義及四種標(biāo)準(zhǔn)方程;

  2、理解參數(shù)的幾何意義(焦準(zhǔn)距)

  3、利用坐標(biāo)法求曲線方程是坐標(biāo)系的適當(dāng)選取。

  課后作業(yè):119頁習(xí)題8.52,4

  設(shè)計(jì)說明:學(xué)生在初中學(xué)習(xí)二次函數(shù)時(shí)知道二次函數(shù)的圖象是一個(gè)拋物線,在物理的學(xué)習(xí)中也接觸過拋物線(物體的運(yùn)動(dòng)軌跡)。因而對拋物線的認(rèn)識比對前面學(xué)習(xí)的兩種圓錐曲線橢圓和雙曲線更多。所以學(xué)生學(xué)起來會輕松。但是要注意的是,現(xiàn)在所學(xué)的拋物線是方程的曲線而不是函數(shù)的圖象。本節(jié)內(nèi)容是在學(xué)習(xí)了橢圓和雙曲線的基礎(chǔ)上,利用圓錐曲線的第二定義統(tǒng)一進(jìn)行展開的,因而對于拋物線的系統(tǒng)學(xué)習(xí)具有雙重的目標(biāo)性。

  拋物線作為點(diǎn)的軌跡,其標(biāo)準(zhǔn)方程的推導(dǎo)過程充滿了辨證法,處處是數(shù)與形之間的對照和相互轉(zhuǎn)化。而要得到拋物線的標(biāo)準(zhǔn)方程,必須建立適當(dāng)?shù)淖鴺?biāo)系,還要依賴焦點(diǎn)和準(zhǔn)線的相互位置關(guān)系,這是拋物線標(biāo)準(zhǔn)方程有四種而不象橢圓和雙曲線只有兩種形式。因而拋物線的標(biāo)準(zhǔn)方程的推導(dǎo)也是培養(yǎng)辨證唯物主義觀點(diǎn)的好素材。

  利用圓錐曲線第二定義通過類比方法,引導(dǎo)學(xué)生觀察和對比,啟發(fā)學(xué)生猜想與概括,利用建立坐標(biāo)系求出拋物線的四種標(biāo)準(zhǔn)方程,讓每一個(gè)學(xué)生都能動(dòng)手,動(dòng)口,動(dòng)腦參與教學(xué)過程,真正貫徹“教師為主導(dǎo),學(xué)生為主體”的教學(xué)思想。對于標(biāo)準(zhǔn)方程中的參數(shù)及其幾何意義,焦點(diǎn)坐標(biāo)和準(zhǔn)線方程與的關(guān)系是本節(jié)課的重點(diǎn)內(nèi)容,必須讓學(xué)生掌握如何根據(jù)標(biāo)準(zhǔn)方程求、焦點(diǎn)坐標(biāo)、準(zhǔn)線方程或根據(jù)后三者求拋物線的標(biāo)準(zhǔn)方程。特別對于一些有關(guān)距離的問題,要能靈活運(yùn)用拋物線的定義給予解決。

  當(dāng)前素質(zhì)教育的主流是培養(yǎng)學(xué)生的能力,讓學(xué)生學(xué)會學(xué)習(xí)。本節(jié)課采用學(xué)生通過探索、觀察、對比分析,自己發(fā)現(xiàn)結(jié)論的學(xué)習(xí)方法,培養(yǎng)了學(xué)生邏輯思維能力,動(dòng)手實(shí)踐能力以及探索的精神。

高中數(shù)學(xué)說課稿 篇5

  一、教材分析

  1· 教材的地位和作用

  在學(xué)習(xí)這節(jié)課以前,我們已經(jīng)學(xué)習(xí)了振幅變換。本節(jié)知識是學(xué)習(xí)函數(shù)圖象變換綜合應(yīng)用的基礎(chǔ),在教材地位上顯得十分重要。

  y=asin(ωx+φ)圖象變換的學(xué)習(xí)有助于學(xué)生進(jìn)一步理解正弦函數(shù)的圖象和性質(zhì),加深學(xué)生對函數(shù)圖象變換的理解和認(rèn)識,加深數(shù)形結(jié)合在數(shù)學(xué)學(xué)習(xí)中的應(yīng)用的認(rèn)識。同時(shí)為相關(guān)學(xué)科的學(xué)習(xí)打下扎實(shí)的基礎(chǔ)。

  ⒉教材的重點(diǎn)和難點(diǎn)

  重點(diǎn)是對周期變換、相位變換規(guī)律的理解和應(yīng)用。

  難點(diǎn)是對周期變換、相位變換先后順序的調(diào)整,對圖象變換的影響。

 、辰滩膬(nèi)容的安排和處理

  函數(shù)y=asin(ωx+φ)圖象這部分內(nèi)容計(jì)劃用3課時(shí),本節(jié)是第2課時(shí),主要學(xué)習(xí)周期變換和相位變換,以及兩種變換的綜合應(yīng)用。

  二、目的分析

 、敝R目標(biāo)

  掌握相位變換、周期變換的變換規(guī)律。

 、材芰δ繕(biāo)

  培養(yǎng)學(xué)生的觀察能力、動(dòng)手能力、歸納能力、分析問題解決問題能力。

  ⒊德育目標(biāo)

  在教學(xué)中努力培養(yǎng)學(xué)生的“由簡單到復(fù)雜、由特殊到一般”的辯證思想,培養(yǎng)學(xué)生的探究能力和協(xié)作學(xué)習(xí)的能力。

  ⒋情感目標(biāo)

  通過學(xué)數(shù)學(xué),用數(shù)學(xué),進(jìn)而培養(yǎng)學(xué)生對數(shù)學(xué)的興趣。

  三、教具使用

 、俦菊n安排在電腦室教學(xué),每個(gè)學(xué)生都擁有一臺計(jì)算機(jī),所有的計(jì)算機(jī)由一套多媒體演示控制系統(tǒng)連接,以實(shí)現(xiàn)師生、生生的相互溝通。

 、谡n前應(yīng)先把本課所需要的幾何畫板課件通過多媒體演示系統(tǒng)發(fā)送到每一臺學(xué)生電腦。

  四、教法、學(xué)法分析

  本節(jié)課以“探究——?dú)w納——應(yīng)用”為主線,通過設(shè)置問題情境,引導(dǎo)學(xué)生自主探究,總結(jié)規(guī)律,并能應(yīng)用規(guī)律分析問題、解決問題。

  以學(xué)生的自主探究為主要方式,把計(jì)算機(jī)使用的主動(dòng)權(quán)交給學(xué)生,讓學(xué)生主動(dòng)去學(xué)習(xí)新知、探究未知,在活動(dòng)中學(xué)習(xí)數(shù)學(xué)、掌握數(shù)學(xué),并能數(shù)學(xué)地提出問題、解決問題。

  五、教學(xué)過程

  教學(xué)過程設(shè)計(jì):

  預(yù)備知識

  一、問題探究

 、艓熒献魈骄恐芷谧儞Q

 、茖W(xué)生自主探究相位變換

  二、歸納概括

  三、實(shí)踐應(yīng)用

  教學(xué)程序

  設(shè)計(jì)說明

  〖預(yù)備知識

  1我們已經(jīng)學(xué)習(xí)了幾種圖象變換?

  2這些變換的規(guī)律是什么?

  幫助學(xué)生鞏固、理解和歸納基礎(chǔ)知識,為后面的學(xué)習(xí)作鋪墊。促使學(xué)生學(xué)會對知識的歸納梳理。

  〖問題探究

 。ㄒ唬⿴熒献魈骄恐芷谧儞Q

  (1)自己動(dòng)手,在幾何畫板中分別觀察①y=sinx→y=sin2x;②y=sinx→y=sin

  x圖象的變換過程,指出變換過程中圖象上每一個(gè)點(diǎn)的坐標(biāo)發(fā)生了什么變化。

  (2) 在上述變換過程中,橫坐標(biāo)的伸長和縮短與ω之間存在怎樣的關(guān)系?

 。ǘ⿲W(xué)生自主探究相位變換

  (1)我們初中學(xué)過的由y=f(x)→y=f(x+a)的圖象變換規(guī)律是怎樣的?

  (2) 令f(x)=sinx,則f(x+φ)=sin (x+φ),那么y=sinx→y=sin (x+φ)的變換是不是也符合上述規(guī)律呢?請動(dòng)手用幾何畫板加以驗(yàn)證。

  設(shè)計(jì)這個(gè)問題的主要用意是讓學(xué)生通過觀察圖象變換的過程,了解周期變換的基本規(guī)律。

  設(shè)計(jì)這個(gè)問題意圖是引導(dǎo)學(xué)生再次認(rèn)真觀察圖象變換的過程,以便總結(jié)周期變換的規(guī)律。

  師生合作探究已經(jīng)讓學(xué)生掌握了探究圖象變換的基本方法,在此基礎(chǔ)上,由學(xué)生自主探究相位變換規(guī)律,提高學(xué)生的綜合能力。

  〖?xì)w納概括

  通過以上探究,你能否總結(jié)出周期變換和相位變換的一般規(guī)律?

  設(shè)計(jì)這個(gè)環(huán)節(jié)的意圖是通過對上述變換過程的探究,進(jìn)而引導(dǎo)學(xué)生歸納概括,從現(xiàn)象到本質(zhì),總結(jié)出周期變換和相位變換的一般規(guī)律。

  〖實(shí)踐應(yīng)用

 。ㄒ唬⿷(yīng)用舉例

  (1)用五點(diǎn)法作出y=sin(2x+)一個(gè)周期內(nèi)的簡圖。

  (2)我們可以通過哪些方法完成y=sinx到y(tǒng)=sin(2x+)的圖象變換

  (3)請動(dòng)手驗(yàn)證上述方法,把幾何畫板所得圖象與用五點(diǎn)法作出的簡圖作比較,觀察哪些方法是正確的,哪些方法是錯(cuò)誤的。

  (4)歸納總結(jié)

  從上述的變換過程中,我們知道若f(x) =sin2x,則f(___)= sin(2x+),由f(x)→f(x+a)的變換規(guī)律得從y=sin2x →y= sin(2x+)的變換應(yīng)該是_____.

 。ǘ┓謱佑(xùn)練

  a組題(基礎(chǔ)題)

  如何完成下列圖象的變換:

  ①y=sin3x→y=sin(3x+1)

 、趛=sin(x+1) →y=sin(3x+1)

  b組題(中等題)

  如何完成下列圖象的變換:

 、賧=sin3x→y=sin(3x+1)

  ②y=sin(x+1) →y=sin(3x+1)

 、踶=sinx →y=sin(3x+1)

  c組題(拓展題)

 、偃绾瓮瓿上铝袌D象的變換:

  y=sinx →y=sin(3x+1)

 、谖覀冎,從f(x)到f(x)+k的變換可通過圖象的上下平移(k>0上移)(k<0下移)|k|個(gè)單位得到。那么由y=f(x)→y=af(x)+k的變換中,振幅變換和上下平移變換是不是也有先后順序呢?請通過實(shí)例加以驗(yàn)證。

  讓學(xué)生用五點(diǎn)法作出這個(gè)圖象是為了驗(yàn)證變換方法是否正確。

  給出這個(gè)問題的用意是開拓學(xué)生的思維,讓學(xué)生從多角度思考問題。

  這個(gè)步驟主要目的是培養(yǎng)學(xué)生的探究能力和動(dòng)手能力。

  這個(gè)問題的解決,是突破本課難點(diǎn)的關(guān)鍵。通過問題的解決,讓學(xué)生理解如果先進(jìn)行周期變換,而后進(jìn)行相位變換,應(yīng)特別關(guān)注x的變化量。

  a組題重在基礎(chǔ)知識的掌握,

  由基礎(chǔ)較薄弱的同學(xué)完成。

  b組比a組增加了第③小題,

  重在對兩種變換的綜合應(yīng)用。

  c組除了考查知識的綜合應(yīng)用,

  還要求學(xué)生對新問題進(jìn)行探究,

  有較大難度,適合基礎(chǔ)較好的

  同學(xué)完成。

  作業(yè):

  (1)必做題

 。2)選做題

  作業(yè)分為兩種形式,體現(xiàn)作業(yè)的鞏固性和發(fā)展性原則。選做題不作統(tǒng)一要求,供學(xué)有余力的學(xué)生課后研究。

  六、評價(jià)分析

  在本節(jié)的教與學(xué)活動(dòng)中,始終體現(xiàn)以學(xué)生的發(fā)展為本的教育理念。在學(xué)生已有的認(rèn)知基礎(chǔ)上進(jìn)行設(shè)問和引導(dǎo),關(guān)注學(xué)生的認(rèn)知過程,注意學(xué)生的品德、思維和心理等方面的發(fā)展。重視動(dòng)手能力的培養(yǎng),重視問題探究意識和能力的培養(yǎng)。同時(shí),考慮不同學(xué)生的個(gè)性差異和發(fā)展層次,使不同的學(xué)生得到不同的發(fā)展,體現(xiàn)因材施教原則。

  調(diào)節(jié)與反饋:

 、膨(yàn)證兩種變換的綜合時(shí),可能會出現(xiàn)有些學(xué)生無法觀察到兩種變換的區(qū)別這種情況,此時(shí),教師除了加以引導(dǎo)外,還需通過教師演示和詳細(xì)講解加以解決。

 、平虒W(xué)中可能出現(xiàn)個(gè)別學(xué)生無法正確操作課件的情況,這種情況下一定要強(qiáng)調(diào)學(xué)生的協(xié)作意識。

  附:板書設(shè)計(jì)

高中數(shù)學(xué)說課稿 篇6

  各位評委、各位老師:大家好!

  我叫李長杉,來自甘肅省嘉峪關(guān)市第一中學(xué)。今天我說課的課題是《一元二次不等式的解法》(第一課時(shí))。下面我將圍繞本節(jié)課"教什么?"、"怎樣教?"以及"為什么這樣教?"三個(gè)問題,從教材內(nèi)容分析、教法學(xué)法分析、教學(xué)過程分析和課堂意外預(yù)案等幾個(gè)方面逐一加以分析和說明。

  一。教材內(nèi)容分析:

  1.本節(jié)課內(nèi)容在整個(gè)教材中的地位和作用。

  概括地講,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,對已學(xué)習(xí)過的集合知識的鞏固和運(yùn)用具有重要的作用,也與后面的函數(shù)、數(shù)列、三角函數(shù)、線形規(guī)劃、直線與圓錐曲線以及導(dǎo)數(shù)等內(nèi)容密切相關(guān)。許多問題的解決都會借助一元二次不等式的解法。因此,一元二次不等式的解法在整個(gè)高中數(shù)學(xué)教學(xué)中具有很強(qiáng)的基礎(chǔ)性,體現(xiàn)出很大的工具作用。

  2.教學(xué)目標(biāo)定位。

  根據(jù)教學(xué)大綱要求、高考考試大綱說明、新課程標(biāo)準(zhǔn)精神、高一學(xué)生已有的知識儲備狀況和學(xué)生心理認(rèn)知特征,我確定了四個(gè)層面的教學(xué)目標(biāo)。第一層面是面向全體學(xué)生的知識目標(biāo):熟練掌握一元二次不等式的兩種解法,正確理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系。第二層面是能力目標(biāo),培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合與等價(jià)轉(zhuǎn)化等數(shù)學(xué)思想方法解決問題的能力,提高運(yùn)算和作圖能力。第三層面是德育目標(biāo),通過對解不等式過程中等與不等對立統(tǒng)一關(guān)系的認(rèn)識,向?qū)W生逐步滲透辨證唯物主義思想。第四層面是情感目標(biāo),在教師的啟發(fā)引導(dǎo)下,學(xué)生自主探究,交流討論,培養(yǎng)學(xué)生的合作意識和創(chuàng)新精神。

  3.教學(xué)重點(diǎn)、難點(diǎn)確定。

  本節(jié)課是在復(fù)習(xí)了一次不等式的解法之后,利用二次函數(shù)的圖象研究一元二次不等式的解法。只要學(xué)生能夠理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系,并利用其關(guān)系解不等式即可。因此,我確定本節(jié)課的教學(xué)重點(diǎn)為一元二次不等式的解法,關(guān)鍵是一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系。

  二。教法學(xué)法分析:

  數(shù)學(xué)是發(fā)展學(xué)生思維、培養(yǎng)學(xué)生良好意志品質(zhì)和美好情感的重要學(xué)科,在教學(xué)中,我們不僅要使學(xué)生獲得知識、提高解題能力,還要讓學(xué)生在教師的啟發(fā)引導(dǎo)下學(xué)會學(xué)習(xí)、樂于學(xué)習(xí),感受數(shù)學(xué)學(xué)科的人文思想,使學(xué)生在學(xué)習(xí)中培養(yǎng)堅(jiān)強(qiáng)的意志品質(zhì)、形成良好的道德情感。為了更好地體現(xiàn)課堂教學(xué)中"教師為主導(dǎo),學(xué)生為主體"的教學(xué)關(guān)系和"以人為本,以學(xué)定教"的教學(xué)理念,在本節(jié)課的教學(xué)過程中,我將緊緊圍繞教師組織——啟發(fā)引導(dǎo),學(xué)生探究——交流發(fā)現(xiàn),組織開展教學(xué)活動(dòng)。我設(shè)計(jì)了①創(chuàng)設(shè)情景——引入新課,②交流探究——發(fā)現(xiàn)規(guī)律,③啟發(fā)引導(dǎo)——形成結(jié)論,④練習(xí)小結(jié)——深化鞏固,⑤思維拓展——提高能力,五個(gè)環(huán)環(huán)相扣、層層深入的教學(xué)環(huán)節(jié),在教學(xué)中注意關(guān)注整個(gè)過程和全體學(xué)生,充分調(diào)動(dòng)學(xué)生積極參與教學(xué)過程的每個(gè)環(huán)節(jié)。

  三。教學(xué)過程分析:

  1.創(chuàng)設(shè)情景——引入新課。我們常說"興趣是最好的老師",長期以來,學(xué)生對學(xué)習(xí)數(shù)學(xué)缺乏興趣,甚至失去信心,一個(gè)重要的原因,是老師在教學(xué)中不重視學(xué)生對學(xué)習(xí)的情感體驗(yàn),教學(xué)應(yīng)該充分考慮學(xué)生的情感和需要,想方設(shè)法讓學(xué)生在學(xué)習(xí)中樹立信心,感受學(xué)習(xí)的樂趣。根據(jù)教材內(nèi)容的安排,我以學(xué)生熟悉的畫一次函數(shù)圖象、求一次方程和一次不等式的解為背景知識切入,設(shè)置一個(gè)練習(xí)題組,一方面讓學(xué)生總結(jié)復(fù)習(xí)已有知識,為后面學(xué)習(xí)二次不等式的解法打下基礎(chǔ),做好鋪墊,另一方面,使學(xué)生在自己熟悉的問題中首先獲得解題成功的快樂體驗(yàn),然后以20xx年江蘇省的一道高考試題為引子,引入本節(jié)課的新授內(nèi)容。對于本題,引導(dǎo)學(xué)生,利用上面解練習(xí)題組1的方法,畫出二次函數(shù)圖象來解答。二次函數(shù)是初中數(shù)學(xué)的重要內(nèi)容,本題又給出了函數(shù)圖象上許多點(diǎn),相信學(xué)生畫出圖象應(yīng)該不成問題,只要教師適當(dāng)點(diǎn)撥,學(xué)生不難得到正確答案。以高考試題為背景引入新課,可以提高學(xué)生興趣,抓住學(xué)生眼球,吸引學(xué)生注意力,還可以讓學(xué)生實(shí)實(shí)在在感受到,高考題就在我們的課本中,就在我們平常的練習(xí)中。

  2.探究交流——發(fā)現(xiàn)規(guī)律。從特殊到一般是我們發(fā)現(xiàn)問題、尋求規(guī)律、揭示問題本質(zhì)最常用的方法之一。我把課本例題1、2編為練習(xí)題組(一),交由學(xué)生用上面解高考題的方法——圖象法去解,學(xué)生由于熟知二次函數(shù)圖象,求解應(yīng)該不會有太大的問題。在這個(gè)過程中,教師要啟發(fā)引導(dǎo)學(xué)生注意對比兩題的異同,組織引導(dǎo)學(xué)生展開交流討論,探討第(2)題能不能先把二次項(xiàng)系數(shù)化正以后再構(gòu)造函數(shù)畫圖求解。然后達(dá)成共識,如果二次項(xiàng)系數(shù)為負(fù)數(shù)時(shí),先做等價(jià)轉(zhuǎn)化,把二次項(xiàng)系數(shù)化為正數(shù)再解,課本19頁例3、例4作為題組(二),繼續(xù)讓學(xué)生用上面的圖象法,由學(xué)生自己求解,這時(shí)我及時(shí)提示學(xué)生注意這兩題與題組(一)中兩題的不同(例1、例2對應(yīng)方程都有兩個(gè)不等實(shí)根,例3對應(yīng)方程有兩相等實(shí)根,例4對應(yīng)方程無實(shí)根)。兩個(gè)題組的練習(xí)之后,可以尋求解二次不等式的一般規(guī)律。

  3.啟發(fā)引導(dǎo)——形成結(jié)論。前面兩個(gè)題組的四個(gè)小題,基本涵蓋了一般一元二次不等式解的各種情況,進(jìn)一步啟發(fā)引導(dǎo)學(xué)生將特殊、具體題目的結(jié)論做一般化總結(jié),與學(xué)生一起就 △>0,△<0,△=0 c="">0或ax2+bx+c<0 a="">0)的解的情況應(yīng)該水到渠成。至此,學(xué)生可以感受到,解二次不等式只須①將二次項(xiàng)系數(shù)化為正數(shù),②求解二次方程 ax2+bx+c=0 的根。③根據(jù)①后的二次不等式的符號寫出解集即可,必要時(shí)也可以結(jié)合圖象寫解集。這樣我們就得到了二次不等式的另外一種解法(可稱為"三步曲"法)。

  4.訓(xùn)練小結(jié)——鞏固深化。為了鞏固和加深二次不等式的兩種解法,接下來及時(shí)組織學(xué)生進(jìn)行課堂練習(xí),完成課本21頁練習(xí)1-4題。本環(huán)節(jié)請不同層次的學(xué)生在黑板上書寫解題過程,之后師生共同糾正問題,規(guī)范解題過程的書寫。

  5.延伸拓寬——提高能力。課堂教學(xué)既要面向全體學(xué)生,又應(yīng)關(guān)注學(xué)生的個(gè)體差異。體現(xiàn)分類推進(jìn),分層教學(xué)的原則。為此,我又設(shè)計(jì)了一個(gè)提高練習(xí)題組,共有三道備選題目,以供程度較好學(xué)有余力的學(xué)生能夠更好的展示自己的解題能力,取得更進(jìn)一步的提高。

  四。課堂意外預(yù)案:

  新課程理念下的教學(xué)更多的關(guān)注學(xué)生自主探究、關(guān)注學(xué)生的個(gè)性發(fā)展,鼓勵(lì)學(xué)生勇于提出問題,培養(yǎng)學(xué)生思維的批評性。在課堂上學(xué)生往往會提出讓老師感到"意外"的問題,我在平時(shí)的教學(xué)中重視對"課堂意外預(yù)案"的探索和思考,備課時(shí)盡量設(shè)想課堂中可能會出現(xiàn)的各種情況,做到有備無患,以免在課堂中學(xué)生提出讓自己出乎意料的問題,使自己陷入被動(dòng)尷尬境地。結(jié)合以往經(jīng)驗(yàn),在本節(jié)課,我提出兩個(gè)"意外預(yù)案".

  1.學(xué)生在做課本練習(xí)1(x+2)(x-3)>0 時(shí),可能會問到轉(zhuǎn)化為不等式組{ 或{ 求解對不對。學(xué)生提出的問題,想法非常好,應(yīng)給予肯定和鼓勵(lì),這與下節(jié)簡單分式不等式和高次不等式的解法有關(guān),是解不等式的另一種解法——等價(jià)轉(zhuǎn)化法,不在本節(jié)課之列。

  2.根據(jù)以往的經(jīng)驗(yàn),在解(x-1)(x+2)>1一類的不等式的時(shí)候,由于受方程(x+1)(x+2)=0 可轉(zhuǎn)化為x-1=0或x+2=0求解的影響,有可能會出現(xiàn)將不等式轉(zhuǎn)化為不等式組{ 來求解的錯(cuò)誤做法,教師要關(guān)注學(xué)生,及時(shí)發(fā)現(xiàn)問題并給予糾正,指出上面的轉(zhuǎn)化不是等價(jià)轉(zhuǎn)化。

  以上是我對本節(jié)課的一些粗淺的認(rèn)識和構(gòu)想,如有不妥之處,懇請各位專家、各位同仁批評指正。謝謝大家!

高中數(shù)學(xué)說課稿 篇7

  一、教材分析:

  1、教材的地位與作用:

  線性規(guī)劃是運(yùn)籌學(xué)的一個(gè)重要分支,在實(shí)際生活中有著廣泛的應(yīng)用。本節(jié)內(nèi)容是在學(xué)習(xí)了不等式、直線方程的基礎(chǔ)上,利用不等式和直線方程的有關(guān)知識展開的,它是對二元一次不等式的深化和再認(rèn)識、再理解。通過這一部分的學(xué)習(xí),使學(xué)生進(jìn)一步了解數(shù)學(xué)在解決實(shí)際問題中的應(yīng)用,體驗(yàn)數(shù)形結(jié)合和轉(zhuǎn)化的思想方法,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣、應(yīng)用數(shù)學(xué)的意識和解決實(shí)際問題的能力。

  2、教學(xué)重點(diǎn)與難點(diǎn):

  重點(diǎn):畫可行域;在可行域內(nèi),用圖解法準(zhǔn)確求得線性規(guī)劃問題的最優(yōu)解。

  難點(diǎn):在可行域內(nèi),用圖解法準(zhǔn)確求得線性規(guī)劃問題的最優(yōu)解。

  二、目標(biāo)分析:

  在新課標(biāo)讓學(xué)生經(jīng)歷“學(xué)數(shù)學(xué)、做數(shù)學(xué)、用數(shù)學(xué)”的理念指導(dǎo)下,本節(jié)課的教學(xué)目標(biāo)分設(shè)為知識目標(biāo)、能力目標(biāo)和情感目標(biāo)。

  知識目標(biāo):

  1、了解線性規(guī)劃的意義,了解線性約束條件、線性目標(biāo)函數(shù)、可行解、可行

  域和最優(yōu)解等概念;

  2、理解線性規(guī)劃問題的圖解法;

  3、會利用圖解法求線性目標(biāo)函數(shù)的最優(yōu)解.

  能力目標(biāo):

  1、在應(yīng)用圖解法解題的過程中培養(yǎng)學(xué)生的觀察能力、理解能力。

  2、在變式訓(xùn)練的過程中,培養(yǎng)學(xué)生的分析能力、探索能力。

  3、在對具體事例的感性認(rèn)識上升到對線性規(guī)劃的理性認(rèn)識過程中,培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合思想解題的能力和化歸能力。

  情感目標(biāo):

  1、讓學(xué)生體驗(yàn)數(shù)學(xué)來源于生活,服務(wù)于生活,體驗(yàn)數(shù)學(xué)在建設(shè)節(jié)約型社會中的作用,品嘗學(xué)習(xí)數(shù)學(xué)的樂趣。

  2、讓學(xué)生體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索與創(chuàng)造,培養(yǎng)學(xué)生勤于思考、勇于探索的精神;

  3、讓學(xué)生學(xué)會用運(yùn)動(dòng)觀點(diǎn)觀察事物,了解事物之間從一般到特殊、從特殊到一般的辨證關(guān)系,滲透辯證唯物主義認(rèn)識論的思想。

  三、過程分析:

  數(shù)學(xué)教學(xué)是數(shù)學(xué)活動(dòng)的教學(xué)。因此,我將整個(gè)教學(xué)過程分為以下六個(gè)教學(xué)環(huán)節(jié):1、創(chuàng)設(shè)情境,提出問題;2、分析問題,形成概念;3、反思過程,提煉方法;4、變式演練,深入探究;5、運(yùn)用新知,解決問題;6、歸納總結(jié),鞏固提高。

  1、創(chuàng)設(shè)情境,提出問題:

  在課堂教學(xué)的開始,我以一組生動(dòng)的動(dòng)畫(配圖片)描述出在神奇的數(shù)學(xué)王國里,有一種算法廣泛應(yīng)用于工農(nóng)業(yè)、軍事、交通運(yùn)輸、決策管理與規(guī)劃等領(lǐng)域,應(yīng)用它已節(jié)約了億萬財(cái)富,還被列為20世紀(jì)對科學(xué)發(fā)展和工程實(shí)踐影響最大的十大算法之一。它為何有如此大的魅力?它又是怎樣的一種神奇算法呢?我以景激情,以情激思,點(diǎn)燃學(xué)生的求知欲,引領(lǐng)學(xué)生進(jìn)入學(xué)習(xí)情境。

高中數(shù)學(xué)說課稿 篇8

  本節(jié)課講述的是人教版高一數(shù)學(xué)(上)3.2等差數(shù)列(第一課時(shí))的內(nèi)容。

  一、教材分析

  1、教材的地位和作用:

  數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。一方面,數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項(xiàng)公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進(jìn)一步深入和拓廣。同時(shí)等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對比的依據(jù)。

  2、教學(xué)目標(biāo)

  根據(jù)教學(xué)大綱的要求和學(xué)生的實(shí)際水平,確定了本次課的教學(xué)目標(biāo)

  a在知識上:理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及思想;初步引入“數(shù)學(xué)建!钡乃枷敕椒ú⒛苓\(yùn)用。

  b在能力上:培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力;在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學(xué)生的知識、方法遷移能力;通過階梯性練習(xí),提高學(xué)生分析問題和解決問題的能力。

  c在情感上:通過對等差數(shù)列的研究,培養(yǎng)學(xué)生主動(dòng)探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。

  3、教學(xué)重點(diǎn)和難點(diǎn)

  根據(jù)教學(xué)大綱的要求我確定本節(jié)課的教學(xué)重點(diǎn)為:

 、俚炔顢(shù)列的概念。

  ②等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及應(yīng)用。

  由于學(xué)生第一次接觸不完全歸納法,對此并不熟悉因此用不完全歸納法推導(dǎo)等差數(shù)列的同項(xiàng)公式是這節(jié)課的一個(gè)難點(diǎn)。同時(shí),學(xué)生對“數(shù)學(xué)建!钡乃枷敕椒ㄝ^為陌生,因此用數(shù)學(xué)思想解決實(shí)際問題是本節(jié)課的另一個(gè)難點(diǎn)。

  二、學(xué)情教法分析:

  對于三中的高一學(xué)生,知識經(jīng)驗(yàn)已較為豐富,他們的智力發(fā)展已到了形式運(yùn)演階段,具備了教強(qiáng)的抽象思維能力和演繹推理能力,所以我在授課時(shí)注重引導(dǎo)、啟發(fā)、研究和探討以符合

  這類學(xué)生的心理發(fā)展特點(diǎn),從而促進(jìn)思維能力的進(jìn)一步發(fā)展。

  針對高中生這一思維特點(diǎn)和心理特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,通過問題激發(fā)學(xué)生求知欲,使學(xué)生主動(dòng)參與數(shù)學(xué)實(shí)踐活動(dòng),以獨(dú)立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題。

  三、學(xué)法指導(dǎo):

  在引導(dǎo)分析時(shí),留出學(xué)生的思考空間,讓學(xué)生去聯(lián)想、探索,同時(shí)鼓勵(lì)學(xué)生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。

  四、教學(xué)程序

  本節(jié)課的教學(xué)過程由(一)復(fù)習(xí)引入(二)新課探究(三)應(yīng)用舉例(四)反饋練習(xí)(五)歸納小結(jié)(六)布置作業(yè),六個(gè)教學(xué)環(huán)節(jié)構(gòu)成。

  (一)復(fù)習(xí)引入:

  1.從函數(shù)觀點(diǎn)看,數(shù)列可看作是定義域?yàn)開_________對應(yīng)的一列函數(shù)值,從而數(shù)列的通項(xiàng)公式也就是相應(yīng)函數(shù)的______。(N﹡;解析式)

  通過練習(xí)1復(fù)習(xí)上節(jié)內(nèi)容,為本節(jié)課用函數(shù)思想研究數(shù)列問題作準(zhǔn)備。

  2.小明目前會100個(gè)單詞,他她打算從今天起不再背單詞了,結(jié)果不知不覺地每天忘掉2個(gè)單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為:100,98,96,94,92 ①

  3. 小芳只會5個(gè)單詞,他決定從今天起每天背記10個(gè)單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞增為5,10,15,20,25 ②

  通過練習(xí)2和3引出兩個(gè)具體的等差數(shù)列,初步認(rèn)識等差數(shù)列的特征,為后面的概念學(xué)習(xí)建立基礎(chǔ),為學(xué)習(xí)新知識創(chuàng)設(shè)問題情境,激發(fā)學(xué)生的求知欲。由學(xué)生觀察兩個(gè)數(shù)列特點(diǎn),引出等差數(shù)列的概念,對問題的總結(jié)又培養(yǎng)學(xué)生由具體到抽象、由特殊到一般的認(rèn)知能力。

  (二) 新課探究

  1、由引入自然的給出等差數(shù)列的概念:

  如果一個(gè)數(shù)列,從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù),這個(gè)數(shù)列就叫等差數(shù)列,

  這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強(qiáng)調(diào):

 、 “從第二項(xiàng)起”滿足條件;

 、诠頳一定是由后項(xiàng)減前項(xiàng)所得;

 、勖恳豁(xiàng)與它的前一項(xiàng)的差必須是同一個(gè)常數(shù)(強(qiáng)調(diào)“同一個(gè)常數(shù)” );

  在理解概念的基礎(chǔ)上,由學(xué)生將等差數(shù)列的文字語言轉(zhuǎn)化為數(shù)學(xué)語言,歸納出數(shù)學(xué)表達(dá)式:

  an+1-an=d (n≥1)同時(shí)為了配合概念的理解,我找了5組數(shù)列,由學(xué)生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。

  1. 9 ,8,7,6,5,4,??;√ d=-1

  2. 0.70,0.71,0.72,0.73,0.74??;√ d=0.01

  3. 0,0,0,0,0,0,??.; √ d=0

  4. 1,2,3,2,3,4,??;×

  5. 1,0,1,0,1,??×

  其中第一個(gè)數(shù)列公差<0,>0,第三個(gè)數(shù)列公差=0

  由此強(qiáng)調(diào):公差可以是正數(shù)、負(fù)數(shù),也可以是0

  2、第二個(gè)重點(diǎn)部分為等差數(shù)列的通項(xiàng)公式

  在歸納等差數(shù)列通項(xiàng)公式中,我采用討論式的教學(xué)方法。給出等差數(shù)列的首項(xiàng),公差d,由學(xué)生研究分組討論a4的通項(xiàng)公式。通過總結(jié)a4的通項(xiàng)公式由學(xué)生猜想a40的通項(xiàng)公式,進(jìn)而歸納an的通項(xiàng)公式。整個(gè)過程由學(xué)生完成,通過互相討論的方式既培養(yǎng)了學(xué)生的協(xié)作意識又化解了教學(xué)難點(diǎn)。

  若一等差數(shù)列{an }的首項(xiàng)是a1,公差是d,則據(jù)其定義可得:

  a2 - a1 =d 即: a2 =a1 +d

  a3 – a2 =d 即: a3 =a2 +d = a1 +2d

  a4 – a3 =d 即: a4 =a3 +d = a1 +3d

  ??

  猜想: a40 = a1 +39d,進(jìn)而歸納出等差數(shù)列的通項(xiàng)公式:

  an=a1+(n-1)d

  此時(shí)指出:這種求通項(xiàng)公式的辦法叫不完全歸納法,這種導(dǎo)出公式的方法不夠嚴(yán)密,為了培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項(xiàng)公式的辦法------迭加法:

  a2 – a1 =d

  a3 – a2 =d

  a4 – a3 =d

  ??

  an – an-1=d

  將這(n-1)個(gè)等式左右兩邊分別相加,就可以得到 an– a1= (n-1) d即 an= a1+(n-1) d

 。1)

  當(dāng)n=1時(shí),(1)也成立,

  所以對一切n∈N﹡,上面的公式都成立

  因此它就是等差數(shù)列{an}的通項(xiàng)公式。

  在迭加法的證明過程中,我采用啟發(fā)式教學(xué)方法。

  利用等差數(shù)列概念啟發(fā)學(xué)生寫出n-1個(gè)等式。

  對照已歸納出的通項(xiàng)公式啟發(fā)學(xué)生想出將n-1個(gè)等式相加。證出通項(xiàng)公式。

  在這里通過該知識點(diǎn)引入迭加法這一數(shù)學(xué)思想,逐步達(dá)到“注重方法,凸現(xiàn)思想” 的教學(xué)要求

  接著舉例說明:若一個(gè)等差數(shù)列{an}的首項(xiàng)是1,公差是2,得出這個(gè)數(shù)列的通項(xiàng)公式是:an=1+(n-1)×2 ,

  即an=2n-1 以此來鞏固等差數(shù)列通項(xiàng)公式運(yùn)用

  同時(shí)要求畫出該數(shù)列圖象,由此說明等差數(shù)列是關(guān)于正整數(shù)n一次函數(shù),其圖像是均勻排開的無窮多個(gè)孤立點(diǎn)。用函數(shù)的思想來研究數(shù)列,使數(shù)列的性質(zhì)顯現(xiàn)得更加清楚。

  (三)應(yīng)用舉例

  這一環(huán)節(jié)是使學(xué)生通過例題和練習(xí),增強(qiáng)對通項(xiàng)公式含義的理解以及對通項(xiàng)公式的運(yùn)用,提高解決實(shí)際問題的能力。通過例1和例2向?qū)W生表明:要用運(yùn)動(dòng)變化的觀點(diǎn)看等差數(shù)列通項(xiàng)公式中的a1、d、n、an這4個(gè)量之間的關(guān)系。當(dāng)其中的部分量已知時(shí),可根據(jù)該公式求出另

  一部分量。

  例1 (1)求等差數(shù)列8,5,2,?的第20項(xiàng);第30項(xiàng);第40項(xiàng)

 。2)-401是不是等差數(shù)列-5,-9,-13,?的項(xiàng)?如果是,是第幾項(xiàng)?

  在第一問中我添加了計(jì)算第30項(xiàng)和第40項(xiàng)以加強(qiáng)鞏固等差數(shù)列通項(xiàng)公式;第二問實(shí)際上是求正整數(shù)解的問題,而關(guān)鍵是求出數(shù)列的通項(xiàng)公式an.

  例2 在等差數(shù)列{an}中,已知a5=10,a12 =31,求首項(xiàng)a1與公差d。

  在前面例1的基礎(chǔ)上將例2當(dāng)作練習(xí)作為對通項(xiàng)公式的鞏固

  例3 是一個(gè)實(shí)際建模問題

  建造房屋時(shí)要設(shè)計(jì)樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5.8米,若樓梯設(shè)計(jì)為等高的16級臺階,問每級臺階高為多少米?

  這道題我采用啟發(fā)式和討論式相結(jié)合的教學(xué)方法。啟發(fā)學(xué)生注意每級臺階“等高”使學(xué)生想到每級臺階離地面的高度構(gòu)成等差數(shù)列,引導(dǎo)學(xué)生將該實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型------等差數(shù)列:(學(xué)生討論分析,分別演板,教師評析問題。問題可能出現(xiàn)在:項(xiàng)數(shù)學(xué)生認(rèn)為是16項(xiàng),應(yīng)明確a1為第2層的樓底離地面的高度,a2表示第一級臺階離地面的高度而第16級臺階離地面高度為a17,可用課件展示實(shí)際樓梯圖以化解難點(diǎn))。

  設(shè)置此題的目的:1.加強(qiáng)同學(xué)們對應(yīng)用題的綜合分析能力,2.通過數(shù)學(xué)實(shí)際問題引出等差數(shù)列問題,激發(fā)了學(xué)生的興趣;3.再者通過數(shù)學(xué)實(shí)例展示了“從實(shí)際問題出發(fā)經(jīng)抽象概括建立數(shù)學(xué)模型,最后還原說明實(shí)際問題的“數(shù)學(xué)建!钡臄(shù)學(xué)思想方法

  (四)反饋練習(xí)

  1、小節(jié)后的練習(xí)中的第1題和第2題(要求學(xué)生在規(guī)定時(shí)間內(nèi)完成)。目的:使學(xué)生熟悉通項(xiàng)公式,對學(xué)生進(jìn)行基本技能訓(xùn)練。

  2、書上例3)梯子的最高一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數(shù)列。計(jì)算中間各級的寬度。

  目的:對學(xué)生加強(qiáng)建模思想訓(xùn)練。

  3、若數(shù)例{an} 是等差數(shù)列,若 bn = k an ,(k為常數(shù))試證明:數(shù)列{bn}是等差數(shù)列

  此題是對學(xué)生進(jìn)行數(shù)列問題提高訓(xùn)練,學(xué)習(xí)如何用定義證明數(shù)列問題同時(shí)強(qiáng)化了等差數(shù)列的概念。

 。ㄎ澹w納小結(jié)(由學(xué)生總結(jié)這節(jié)課的收獲)

  1.等差數(shù)列的概念及數(shù)學(xué)表達(dá)式.

  強(qiáng)調(diào)關(guān)鍵字:從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù)

  2.等差數(shù)列的通項(xiàng)公式 an= a1+(n-1) d會知三求一

  3.用“數(shù)學(xué)建!彼枷敕椒ń鉀Q實(shí)際問題

  (六)布置作業(yè)

  必做題:課本P114 習(xí)題3.2第2,6 題

  選做題:已知等差數(shù)列{an}的首項(xiàng)a1=-24,從第10項(xiàng)開始為正數(shù),求公差d的取值范圍。

 。康模和ㄟ^分層作業(yè),提高同學(xué)們的求知欲和滿足不同層次的學(xué)生需求)

  五、板書設(shè)計(jì)

  在板書中突出本節(jié)重點(diǎn),將強(qiáng)調(diào)的地方如定義中,“從第二項(xiàng)起”及“同一常數(shù)”等幾個(gè)字用紅色粉筆標(biāo)注,同時(shí)給學(xué)生留有作題的地方,整個(gè)板書充分體現(xiàn)了精講多練的教學(xué)方法。

高中數(shù)學(xué)說課稿 篇9

  尊敬的各位專家、評委:

  大家好!

  我是盧龍縣木井中學(xué)數(shù)學(xué)教師xx,我今天說課的題目是:人教A版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書 數(shù)學(xué)必修5第一章第一節(jié)的第一課時(shí)《正弦定理》,依據(jù)新課程標(biāo)準(zhǔn)對教材的要求,結(jié)合我對教材的理解,我將從以下幾個(gè)方面說明我的設(shè)計(jì)和構(gòu)思。

  一、教材分析

  “解三角形”既是高中數(shù)學(xué)的基本內(nèi)容,又有較強(qiáng)的應(yīng)用性,在這次課程改革中,被保留下來,并獨(dú)立成為一章。這部分內(nèi)容從知識體系上看,應(yīng)屬于三角函數(shù)這一章,從研究方法上看,也可以歸屬于向量應(yīng)用的一方面。從某種意義講,這部分內(nèi)容是用代數(shù)方法解決幾何問題的典型內(nèi)容之一。而本課“正弦定理”,作為單元的起始課,是在學(xué)生已有的三角函數(shù)及向量知識的基礎(chǔ)上,通過對三角形邊角關(guān)系作量化探究,發(fā)現(xiàn)并掌握正弦定理(重要的解三角形工具),通過這一部分內(nèi)容的學(xué)習(xí),讓學(xué)生從“實(shí)際問題”抽象成“數(shù)學(xué)問題”的建模過程中,體驗(yàn) “觀察——猜想——證明——應(yīng)用”這一思維方法,養(yǎng)成大膽猜想、善于思考的品質(zhì)和勇于求真的精神。同時(shí)在解決問題的過程中,感受數(shù)學(xué)的力量,進(jìn)一步培養(yǎng)學(xué)生對數(shù)學(xué)的學(xué)習(xí)興趣和“用數(shù)學(xué)”的意識。

  二、學(xué)情分析

  我所任教的學(xué)校是我縣一所農(nóng)村普通中學(xué),大多數(shù)學(xué)生基礎(chǔ)薄弱,對“一些重要的數(shù)學(xué)思想和數(shù)學(xué)方法”的應(yīng)用意識和技能還不高。但是,大多數(shù)學(xué)生對數(shù)學(xué)的興趣較高,比較喜歡數(shù)學(xué),尤其是象本節(jié)課這樣與實(shí)際生活聯(lián)系比較緊密的內(nèi)容,相信學(xué)生能夠積極配合,有比較不錯(cuò)的表現(xiàn)。

  三、教學(xué)目標(biāo)

  1、知識和技能:在創(chuàng)設(shè)的問題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡單運(yùn)用正弦定理解決一些簡單的解三角形問題。

  過程與方法:學(xué)生參與解題方案的探索,嘗試應(yīng)用觀察——猜想——證明——應(yīng)用”等思想方法,尋求最佳解決方案,從而引發(fā)學(xué)生對現(xiàn)實(shí)世界的一些數(shù)學(xué)模型進(jìn)行思考。

  情感、態(tài)度、價(jià)值觀:培養(yǎng)學(xué)生合情合理探索數(shù)學(xué)規(guī)律的數(shù)學(xué)思想方法,通過平面幾何、三角形函數(shù)、正弦定理、向量的數(shù)量積等知識間的聯(lián)系來體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一。同時(shí),通過實(shí)際問題的探討、解決,讓學(xué)生體驗(yàn)學(xué)習(xí)成就感,增強(qiáng)數(shù)學(xué)學(xué)習(xí)興趣和主動(dòng)性,鍛煉探究精神。樹立“數(shù)學(xué)與我有關(guān),數(shù)學(xué)是有用的,我要用數(shù)學(xué),我能用數(shù)學(xué)”的理念。

  2、教學(xué)重點(diǎn)、難點(diǎn)

  教學(xué)重點(diǎn):正弦定理的發(fā)現(xiàn)與證明;正弦定理的簡單應(yīng)用。

  教學(xué)難點(diǎn):正弦定理證明及應(yīng)用。

  四、教學(xué)方法與手段

  為了更好的達(dá)成上面的教學(xué)目標(biāo),促進(jìn)學(xué)習(xí)方式的轉(zhuǎn)變,本節(jié)課我準(zhǔn)備采用“問題教學(xué)法”,即由教師以問題為主線組織教學(xué),利用多媒體和實(shí)物投影儀等教學(xué)手段來激發(fā)興趣、突出重點(diǎn),突破難點(diǎn),提高課堂效率,并引導(dǎo)學(xué)生采取自主探究與相互合作相結(jié)合的學(xué)習(xí)方式參與到問題解決的過程中去,從中體驗(yàn)成功與失敗,從而逐步建立完善的認(rèn)知結(jié)構(gòu)。

  五、教學(xué)過程

  為了很好地完成我所確定的教學(xué)目標(biāo),順利地解決重點(diǎn),突破難點(diǎn),同時(shí)本著貼近生活、貼近學(xué)生、貼近時(shí)代的原則,我設(shè)計(jì)了這樣的教學(xué)過程:

  (一)創(chuàng)設(shè)情景,揭示課題

  問題1:寧靜的夜晚,明月高懸,當(dāng)你仰望夜空,欣賞這美好夜色的時(shí)候,會不會想要知道:那遙不可及的月亮離我們究竟有多遠(yuǎn)呢?

  1671年兩個(gè)法國天文學(xué)家首次測出了地月之間的距離大約為 385400km,你知道他們當(dāng)時(shí)是怎樣測出這個(gè)距離的嗎?

  問題2:在現(xiàn)在的高科技時(shí)代,要想知道某座山的高度,沒必要親自去量,只需水平飛行的飛機(jī)從山頂一過便可測出,你知道這是為什么嗎?還有,交通警察是怎樣測出正在公路上行駛的汽車的速度呢?要想解決這些問題, 其實(shí)并不難,只要你學(xué)好本章內(nèi)容即可掌握其原理。(板書課題《解三角形》)

  [設(shè)計(jì)說明]引用教材本章引言,制造知識與問題的沖突,激發(fā)學(xué)生學(xué)習(xí)本章知識的興趣。

  (二)特殊入手,發(fā)現(xiàn)規(guī)律

  問題3:在初中,我們已經(jīng)學(xué)習(xí)了《銳角三角函數(shù)和解直角三角形》這一章,老師想試試你的實(shí)力,請你根據(jù)初中知識,解決這樣一個(gè)問題。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把這個(gè)直角三角形中的所有的邊和角用一個(gè)表達(dá)式表示出來嗎?

  引導(dǎo)啟發(fā)學(xué)生發(fā)現(xiàn)特殊情形下的正弦定理

  (三)類比歸納,嚴(yán)格證明

  問題4:本題屬于初中問題,而且比較簡單,不夠刺激,現(xiàn)在如果我為難為難你,讓你也當(dāng)一回老師,如果有個(gè)學(xué)生把條件中的Rt⊿ABC不小心寫成了銳角⊿ABC,其它沒有變,你說這個(gè)結(jié)論還成立嗎?

  [設(shè)計(jì)說明]此時(shí)放手讓學(xué)生自己完成,如果感覺自己解決有困難,學(xué)生也可以前后桌或同桌結(jié)組研究,鼓勵(lì)學(xué)生用不同的方法證明這個(gè)結(jié)論,在巡視的過程中讓不同方法的學(xué)生上黑板展示,如果沒有用向量的學(xué)生,教師引導(dǎo)提示學(xué)生能否用向量完成證明。

  問題5:好根據(jù)剛才我們的研究,說明這一結(jié)論在直角三角形和銳角三角形中都成立,于是,我們是否有了更為大膽的猜想,把條件中的銳角⊿ABC改為角鈍角⊿ABC,其它不變,這個(gè)結(jié)論仍然成立?我們光說成立不行,必須有能力進(jìn)行嚴(yán)格的理論證明,你有這個(gè)能力嗎?下面我希望你能用實(shí)力告訴我,開始。(啟發(fā)引導(dǎo)學(xué)生用多種方法加以研究證明,尤其是向量法,在下節(jié)余弦定理的證明中還要用,因此務(wù)必啟發(fā)學(xué)生用向量法完成證明。)

  [設(shè)計(jì)說明] 放手給學(xué)生實(shí)踐的機(jī)會和時(shí)間,使學(xué)生真正的參與到問題解決的過程中去,讓學(xué)生在學(xué)數(shù)學(xué)的實(shí)踐中去感悟和提高數(shù)學(xué)的思維方法和思維習(xí)慣。同時(shí),考慮到有部分同學(xué)基礎(chǔ)較差,考個(gè)人或小組可能無法完成探究任務(wù),教師在學(xué)生動(dòng)手的同時(shí),通過巡查,讓提前證明出結(jié)論的同學(xué)上黑板完成,這樣做一方面肯定了先完成的同學(xué)的先進(jìn)性,鍛煉了上黑板同學(xué)的解題過程的書寫規(guī)范性,同時(shí),也讓從無從下手的同學(xué)有個(gè)參考,不至于閑呆著浪費(fèi)時(shí)間。

  問題6:由此,你能否得到一個(gè)更一般的結(jié)論?你能用比較精煉的語言把它概括一下嗎?好,這就是我們這節(jié)課研究的主要內(nèi)容,大名鼎鼎的正弦定理(此時(shí)板書課題并用紅色粉筆標(biāo)示出正弦定理內(nèi)容)

  教師講解:告訴大家,其實(shí)這個(gè)大名鼎鼎的正弦定理是由伊朗著名的天文學(xué)家阿布爾─威發(fā)﹝940-998﹞首先發(fā)現(xiàn)與證明的。中亞細(xì)亞人阿爾比魯尼﹝973-1048﹞給三角形的正弦定理作出了一個(gè)證明。也有說正弦定理的證明是13世紀(jì)的阿塞拜疆人納速拉丁在系統(tǒng)整理前人成就的基礎(chǔ)上得出的。不管怎樣,我們說在1000年以前,人們就發(fā)現(xiàn)了這個(gè)充滿著數(shù)學(xué)美的結(jié)論,不能不說也是人類數(shù)學(xué)史上的一個(gè)奇跡。老師希望21世紀(jì)的你能在今后的學(xué)習(xí)中也研究出一個(gè)被后人景仰的某某定理來,到那時(shí)我也就成了數(shù)學(xué)家的老師了。當(dāng)然,老師的希望能否變成現(xiàn)實(shí),就要看大家的了。

  [設(shè)計(jì)說明] 通過本段內(nèi)容的講解,滲透一些數(shù)學(xué)史的內(nèi)容,對學(xué)生不僅有數(shù)學(xué)美得熏陶,更能激發(fā)學(xué)生學(xué)習(xí)科學(xué)文化知識的熱情。

  (四)強(qiáng)化理解,簡單應(yīng)用

  下面請大家看我們的教材2-3頁到例題1上邊,并自學(xué)解三角形定義。

  [設(shè)計(jì)說明] 讓學(xué)生看看書,放慢節(jié)奏,有利于學(xué)生消化和吸收剛才的內(nèi)容,同時(shí)教師可以利用這段時(shí)間對個(gè)別學(xué)困生進(jìn)行輔導(dǎo),以減少掉隊(duì)的同學(xué)數(shù)量,同時(shí)培養(yǎng)學(xué)生養(yǎng)成自覺看書的好習(xí)慣。

  我們學(xué)習(xí)了正弦定理之后,你覺得它有什么應(yīng)用?在三角形中他能解決那些問題呢? 我們先小試牛刀,來一個(gè)簡單的問題:

  問題7:(教材例題1)⊿ABC中,已知A=30,B=75,a=40cm,解三角形。

  (本題簡單,找兩位同學(xué)上黑板完成,其他同學(xué)在底下練習(xí)本上完成,同學(xué)可以小聲音討論,完成后教師根據(jù)學(xué)生實(shí)踐中發(fā)現(xiàn)的問題給予必要的講評)

  [設(shè)計(jì)說明] 充分給學(xué)生自己動(dòng)手的時(shí)間和機(jī)會,由于本題是唯一解,為將來學(xué)生感悟什么情況下三角形有唯一解創(chuàng)造條件。

  強(qiáng)化練習(xí)

  讓全體同學(xué)限時(shí)完成教材4頁練習(xí)第一題,找兩位同學(xué)上黑板。

  問題8:(教材例題2)在⊿ABC中a=20cm,b=28cm,A=30,解三角形。

  [設(shè)計(jì)說明]例題2較難,目的是使學(xué)生明確,利用正弦定理有兩種可能,同時(shí),引導(dǎo)學(xué)生對比例題1研究,在什么情況下解三角形有唯一解?為什么?對學(xué)有余力的同學(xué)鼓勵(lì)他們自學(xué)探究與發(fā)現(xiàn)教材8頁得內(nèi)容:《解三角形的進(jìn)一步討論》

  (五)小結(jié)歸納,深化拓展

  1、正弦定理

  2、正弦定理的證明方法

  3、正弦定理的應(yīng)用

  4、涉及的數(shù)學(xué)思想和方法。

  [設(shè)計(jì)說明] 師生共同總結(jié)本節(jié)課的收獲的同時(shí),引導(dǎo)學(xué)生學(xué)會自己總結(jié),讓學(xué)生進(jìn)一步回顧和體會知識的形成、發(fā)展、完善的過程。

  (六)布置作業(yè),鞏固提高

  1、教材10頁習(xí)題1.1A組第1題。

  2、學(xué)有余力的同學(xué)探究10頁B組第1題,體會正弦定理的其他證明方法。

  證明:設(shè)三角形外接圓的半徑是R,則a=2RsinA,b=2RsinB, c=2RsinC

  [設(shè)計(jì)說明] 對不同水平的學(xué)生設(shè)計(jì)不同梯度的作業(yè),尊重學(xué)生的個(gè)性差異,有利于因材施教的教學(xué)原則的貫徹。

【實(shí)用的高中數(shù)學(xué)說課稿范文合集9篇】相關(guān)文章:

實(shí)用的高中數(shù)學(xué)說課稿范文合集5篇08-11

實(shí)用的高中數(shù)學(xué)說課稿范文合集6篇08-08

實(shí)用的高中數(shù)學(xué)說課稿范文合集六篇08-06

實(shí)用的高中數(shù)學(xué)說課稿范文合集十篇08-17

實(shí)用的高中數(shù)學(xué)說課稿范文合集七篇08-15

實(shí)用的高中數(shù)學(xué)說課稿合集5篇08-09

實(shí)用的高中數(shù)學(xué)說課稿合集8篇07-31

實(shí)用的高中數(shù)學(xué)說課稿合集7篇07-29

實(shí)用的高中數(shù)學(xué)說課稿合集五篇07-26