久久久久无码精品,四川省少妇一级毛片,老老熟妇xxxxhd,人妻无码少妇一区二区

高中數(shù)學說課稿

時間:2021-08-17 09:17:04 高中說課稿 我要投稿

精選高中數(shù)學說課稿范文集合十篇

  作為一位杰出的教職工,通常會被要求編寫說課稿,借助說課稿可以有效提升自己的教學能力。如何把說課稿做到重點突出呢?下面是小編為大家收集的高中數(shù)學說課稿10篇,歡迎閱讀,希望大家能夠喜歡。

精選高中數(shù)學說課稿范文集合十篇

高中數(shù)學說課稿 篇1

  一、教材分析:

  1、教材的地位與作用:

  線性規(guī)劃是運籌學的一個重要分支,在實際生活中有著廣泛的應(yīng)用。本節(jié)內(nèi)容是在學習了不等式、直線方程的基礎(chǔ)上,利用不等式和直線方程的有關(guān)知識展開的,它是對二元一次不等式的深化和再認識、再理解。通過這一部分的學習,使學生進一步了解數(shù)學在解決實際問題中的應(yīng)用,體驗數(shù)形結(jié)合和轉(zhuǎn)化的思想方法,培養(yǎng)學生學習數(shù)學的興趣、應(yīng)用數(shù)學的意識和解決實際問題的能力。

  2、教學重點與難點:

  重點:畫可行域;在可行域內(nèi),用圖解法準確求得線性規(guī)劃問題的最優(yōu)解。

  難點:在可行域內(nèi),用圖解法準確求得線性規(guī)劃問題的最優(yōu)解。

  二、目標分析:

  在新課標讓學生經(jīng)歷“學數(shù)學、做數(shù)學、用數(shù)學”的理念指導下,本節(jié)課的教學目標分設(shè)為知識目標、能力目標和情感目標。

  知識目標:

  1、了解線性規(guī)劃的意義,了解線性約束條件、線性目標函數(shù)、可行解、可行

  域和最優(yōu)解等概念;

  2、理解線性規(guī)劃問題的圖解法;

  3、會利用圖解法求線性目標函數(shù)的最優(yōu)解.

  能力目標:

  1、在應(yīng)用圖解法解題的過程中培養(yǎng)學生的觀察能力、理解能力。

  2、在變式訓練的過程中,培養(yǎng)學生的分析能力、探索能力。

  3、在對具體事例的感性認識上升到對線性規(guī)劃的理性認識過程中,培養(yǎng)學生運用數(shù)形結(jié)合思想解題的能力和化歸能力。

  情感目標:

  1、讓學生體驗數(shù)學來源于生活,服務(wù)于生活,體驗數(shù)學在建設(shè)節(jié)約型社會中的作用,品嘗學習數(shù)學的樂趣。

  2、讓學生體驗數(shù)學活動充滿著探索與創(chuàng)造,培養(yǎng)學生勤于思考、勇于探索的精神;

  3、讓學生學會用運動觀點觀察事物,了解事物之間從一般到特殊、從特殊到一般的辨證關(guān)系,滲透辯證唯物主義認識論的思想。

  三、過程分析:

  數(shù)學教學是數(shù)學活動的教學。因此,我將整個教學過程分為以下六個教學環(huán)節(jié):1、創(chuàng)設(shè)情境,提出問題;2、分析問題,形成概念;3、反思過程,提煉方法;4、變式演練,深入探究;5、運用新知,解決問題;6、歸納總結(jié),鞏固提高。

  1、創(chuàng)設(shè)情境,提出問題:

  在課堂教學的開始,我以一組生動的動畫(配圖片)描述出在神奇的數(shù)學王國里,有一種算法廣泛應(yīng)用于工農(nóng)業(yè)、軍事、交通運輸、決策管理與規(guī)劃等領(lǐng)域,應(yīng)用它已節(jié)約了億萬財富,還被列為20世紀對科學發(fā)展和工程實踐影響最大的十大算法之一。它為何有如此大的魅力?它又是怎樣的一種神奇算法呢?我以景激情,以情激思,點燃學生的求知欲,引領(lǐng)學生進入學習情境。

高中數(shù)學說課稿 篇2

  一、教材分析

  1、從在教材中的地位與作用來看

  《等比數(shù)列的前n項和》是數(shù)列這一章中的一個重要內(nèi)容,它不僅在現(xiàn)實生活中有著廣泛的實際應(yīng)用,如儲蓄、分期付款的有關(guān)計算等等,而且公式推導過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學生今后學習和工作中必備的數(shù)學素養(yǎng)。

  2、從學生認知角度看

  從學生的思維特點看,很容易把本節(jié)內(nèi)容與等差數(shù)列前n項和從公式的形成、特點等方面進行類比,這是積極因素,應(yīng)因勢利導。不利因素是:本節(jié)公式的推導與等差數(shù)列前n項和公式的推導有著本質(zhì)的不同,這對學生的思維是一個突破,另外,對于q=1這一特殊情況,學生往往容易忽視,尤其是在后面使用的過程中容易出錯。

  3、學情分析

  教學對象是剛進入高中的學生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴謹。

  4、重點、難點

  教學重點:公式的推導、公式的特點和公式的運用。

  教學難點:公式的推導方法和公式的靈活運用。

  公式推導所使用的"錯位相減法"是高中數(shù)學數(shù)列求和方法中最常用的方法之一,它蘊含了重要的數(shù)學思想,所以既是重點也是難點。

  二、目標分析

  知識與技能目標:

  理解并掌握等比數(shù)列前n項和公式的推導過程、公式的特點,在此基礎(chǔ)上能初步應(yīng)用公式解決與之有關(guān)的問題。

  過程與方法目標:

  通過對公式推導方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)

  化、分類討論等數(shù)學思想,培養(yǎng)學生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力。

  情感與態(tài)度價值觀:

  通過對公式推導方法的探索與發(fā)現(xiàn),優(yōu)化學生的思維品質(zhì),滲透事物之間等價轉(zhuǎn)化和理論聯(lián)系實際的辯證唯物主義觀點。

  三、過程分析

  學生是認知的主體,設(shè)計教學過程必須遵循學生的認知規(guī)律,盡可能地讓學生去經(jīng)歷知識的形成與發(fā)展過程,結(jié)合本節(jié)課的特點,我設(shè)計了如下的教學過程:

  1、創(chuàng)設(shè)情境,提出問題

  在古印度,有個名叫西薩的人,發(fā)明了國際象棋,當時的印度國王大為贊賞,對他說:我可以滿足你的任何要求。西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數(shù)學家計算,結(jié)果出來后,國王大吃一驚。為什么呢?

  設(shè)計意圖:設(shè)計這個情境目的是在引入課題的同時激發(fā)學生的興趣,調(diào)動學習的積極性。故事內(nèi)容緊扣本節(jié)課的主題與重點。

  此時我問:同學們,你們知道西薩要的是多少粒小麥嗎?引導學生寫出麥?倲(shù)。帶著這樣的問題,學生會動手算了起來,他們想到用計算器依次算出各項的值,然后再求和。這時我對他們的這種思路給予肯定。

  設(shè)計意圖:在實際教學中,由于受課堂時間限制,教師舍不得花時間讓學生去做所謂的"無用功",急急忙忙地拋出"錯位相減法",這樣做有悖學生的認知規(guī)律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個教學關(guān)鍵處學生難以轉(zhuǎn)過彎來,因而在教學中應(yīng)舍得花時間營造知識形成過程的氛圍,突破學生學習的障礙。同時,形成繁難的情境激起了學生的求知欲,迫使學生急于尋求解決問題的新方法,為后面的教學埋下伏筆、

  2、師生互動,探究問題

  在肯定他們的思路后,我接著問:1,2,22,.....,263是什么數(shù)列?有何特征?應(yīng)歸結(jié)為什么數(shù)學問題呢?

  探討1:,記為(1)式,注意觀察每一項的特征,有何聯(lián)系?(學生會發(fā)現(xiàn),后一項都是前一項的2倍)

  探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式。比較(1)(2)兩式,你有什么發(fā)現(xiàn)?

  設(shè)計意圖:留出時間讓學生充分地比較,等比數(shù)列前n項和的公式推導關(guān)鍵是變"加"為"減",在教師看來這是"天經(jīng)地義"的,但在學生看來卻是"不可思議"的,因此教學中應(yīng)著力在這兒做文章,從而抓住培養(yǎng)學生的辯證思維能力的良好契機。

  經(jīng)過比較、研究,學生發(fā)現(xiàn):(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:。老師指出:這就是錯位相減法,并要求學生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢?

  設(shè)計意圖:經(jīng)過繁難的計算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡潔了!讓學生在探索過程中,充分感受到成功的情感體驗,從而增強學習數(shù)學的興趣和學好數(shù)學的信心。

  3、類比聯(lián)想,解決問題

  這時我再順勢引導學生將結(jié)論一般化,

  這里,讓學生自主完成,并喊一名學生上黑板,然后對個別學生進行指導。

  設(shè)計意圖:在教師的指導下,讓學生從特殊到一般,從已知到未知,步步深入,讓學生自己探究公式,從而體驗到學習的愉快和成就感。

  對不對?這里的q能不能等于1?等比數(shù)列中的公比能不能為1?q=1時是什么數(shù)列?此時sn=?(這里引導學生對q進行分類討論,得出公式,同時為后面的例題教學打下基礎(chǔ)。)

  再次追問:結(jié)合等比數(shù)列的通項公式an=a1qn—1,如何把sn用a1、an、q表示出來?(引導學生得出公式的另一形式)

  設(shè)計意圖:通過反問精講,一方面使學生加深對知識的認識,完善知識結(jié)構(gòu),另一方面使學生由簡單地模仿和接受,變?yōu)閷χR的主動認識,從而進一步提高分析、類比和綜合的能力。這一環(huán)節(jié)非常重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點睛之妙用。

  4、討論交流,延伸拓展

  在此基礎(chǔ)上,我提出:探究等比數(shù)列前n項和公式,還有其它方法嗎?我們知道,

  那么我們能否利用這個關(guān)系而求出sn呢?根據(jù)等比數(shù)列的定義又有,能否聯(lián)想到等比定理從而求出sn呢?

  設(shè)計意圖:以疑導思,激發(fā)學生的探索欲望,營造一個讓學生主動觀察、思考、討論的氛圍、以上兩種方法都可以化歸到,這其實就是關(guān)于的一個遞推式,遞推數(shù)列有非常重要的研究價值,是研究性學習和課外拓展的極佳資源,它源于課本,又高于課本,對學生的思維發(fā)展有促進作用、

  5、變式訓練,深化認識

  首先,學生獨立思考,自主解題,再請學生上臺來幻燈演示他們的解答,其它同學進行評價,然后師生共同進行總結(jié)。

  設(shè)計意圖:采用變式教學設(shè)計題組,深化學生對公式的認識和理解,通過直接套用公式、變式運用公式、研究公式特點這三個層次的問題解決,促進學生新的數(shù)學認知結(jié)構(gòu)的形成。通過以上形式,讓全體學生都參與教學,以此培養(yǎng)學生的參與意識和競爭意識。

  6、例題講解,形成技能

  設(shè)計意圖:解題時,以學生分析為主,教師適時給予點撥,該題有意培養(yǎng)學生對含有參數(shù)的問題進行分類討論的數(shù)學思想。

  7、總結(jié)歸納,加深理解

  以問題的形式出現(xiàn),引導學生回顧公式、推導方法,鼓勵學生積極回答,然后老師再從知識點及數(shù)學思想方法兩方面總結(jié)。

  設(shè)計意圖:以此培養(yǎng)學生的口頭表達能力,歸納概括能力。

  8、故事結(jié)束,首尾呼應(yīng)

  最后我們回到故事中的問題,我們可以計算出國王獎賞的小麥約為1、84×1019粒,大約7000億噸,用這么多小麥能從地球到太陽鋪設(shè)一條寬10米、厚8米的大道,大約是全世界一年糧食產(chǎn)量的459倍,顯然國王兌現(xiàn)不了他的承諾。

  設(shè)計意圖:把引入課題時的懸念給予釋疑,有助于學生克服疲倦、繼續(xù)積極思維。

  9、課后作業(yè),分層練習

  必做:P129練習1、2、3、4

  選作:

  (2)"遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?"這首中國古詩的答案是多少?

  設(shè)計意圖:出選作題的目的是注意分層教學和因材施教,讓學有余力的學生有思考的空間。

  四、教法分析

  對公式的教學,要使學生掌握與理解公式的來龍去脈,掌握公式的推導方法,理解公式的成立條件,充分體現(xiàn)公式之間的聯(lián)系。在教學中,我采用"問題――探究"的教學模式,把整個課堂分為呈現(xiàn)問題、探索規(guī)律、總結(jié)規(guī)律、應(yīng)用規(guī)律四個階段。

  利用多媒體輔助教學,直觀地反映了教學內(nèi)容,使學生思維活動得以充分展開,從而優(yōu)化了教學過程,大大提高了課堂教學效率。

  五、評價分析

  本節(jié)課通過三種推導方法的研究,使學生從不同的思維角度掌握了等比數(shù)列前n項和公式。錯位相減:變加為減,等價轉(zhuǎn)化;遞推思想:縱橫聯(lián)系,揭示本質(zhì);等比定理:回歸定義,自然樸實。學生從中深刻地領(lǐng)會到推導過程中所蘊含的數(shù)學思想,培養(yǎng)了學生思維的深刻性、敏銳性、廣闊性、批判性。同時通過精講一題,發(fā)散一串的變式教學,使學生既鞏固了知識,又形成了技能。在此基礎(chǔ)上,通過民主和諧的課堂氛圍,培養(yǎng)了學生自主學習、合作交流的學習習慣,也培養(yǎng)了學生勇于探索、不斷創(chuàng)新的思維品質(zhì)。

高中數(shù)學說課稿 篇3

  一、教材分析

  1.《指數(shù)函數(shù)》在教材中的地位、作用和特點

  《指數(shù)函數(shù)》是人教版高中數(shù)學(必修)第一冊第二章“函數(shù)”的第六節(jié)內(nèi)容,是在學習了《指數(shù)》一節(jié)內(nèi)容之后編排的。通過本節(jié)課的學習,既可以對指數(shù)和函數(shù)的概念等知識進一步鞏固和深化,又可以為后面進一步學習對數(shù)、對數(shù)函數(shù)尤其是利用互為反函數(shù)的圖象間的關(guān)系來研究對數(shù)函數(shù)的性質(zhì)打下堅實的概念和圖象基礎(chǔ),又因為《指數(shù)函數(shù)》是進入高中以后學生遇到的第一個系統(tǒng)研究的函數(shù),對高中階段研究對數(shù)函數(shù)、三角函數(shù)等完整的函數(shù)知識,初步培養(yǎng)函數(shù)的應(yīng)用意識打下了良好的學習基礎(chǔ),所以《指數(shù)函數(shù)》不僅是本章《函數(shù)》的重點內(nèi)容,也是高中學段的主要研究內(nèi)容之一,有著不可替代的重要作用。

  此外,《指數(shù)函數(shù)》的知識與我們的日常生產(chǎn)、生活和科學研究有著緊密的聯(lián)系,尤其體現(xiàn)在細胞分裂、貸款利率的計算和考古中的年代測算等方面,因此學習這部分知識還有著廣泛的現(xiàn)實意義。本節(jié)內(nèi)容的特點之一是概念性強,特點之二是凸顯了數(shù)學圖形在研究函數(shù)性質(zhì)時的重要作用。

  2.教學目標、重點和難點

  通過初中學段的學習和高中對集合、函數(shù)等知識的系統(tǒng)學習,學生對函數(shù)和圖象的關(guān)系已經(jīng)構(gòu)建了一定的認知結(jié)構(gòu),主要體現(xiàn)在三個方面:

  知識維度:對正比例函數(shù)、反比例函數(shù)、一次函數(shù),二次函數(shù)等最簡單的函數(shù)概念和性質(zhì)已有了初步認識,能夠從初中運動變化的角度認識函數(shù)初步轉(zhuǎn)化到從集合與對應(yīng)的觀點來認識函數(shù)。

  技能維度:學生對采用“描點法”描繪函數(shù)圖象的方法已基本掌握,能夠為研究《指數(shù)函數(shù)》的性質(zhì)做好準備。

  素質(zhì)維度:由觀察到抽象的數(shù)學活動過程已有一定的體會,已初步了解了數(shù)形結(jié)合的思想。

  鑒于對學生已有的知識基礎(chǔ)和認知能力的分析,根據(jù)《教學大綱》的要求,我確定本節(jié)課的教學目標、教學重點和難點如下:

  (1)知識目標:

 、僬莆罩笖(shù)函數(shù)的概念;

  ②掌握指數(shù)函數(shù)的圖象和性質(zhì);

 、勰艹醪嚼弥笖(shù)函數(shù)的概念解決實際問題;

  (2)技能目標:

  ①滲透數(shù)形結(jié)合的基本數(shù)學思想方法

 、谂囵B(yǎng)學生觀察、聯(lián)想、類比、猜測、歸納的能力;

  (3)情感目標:

 、袤w驗從特殊到一般的學習規(guī)律,認識事物之間的普遍聯(lián)系與相互轉(zhuǎn)化,培養(yǎng)學生用聯(lián)系的觀點看問題②通過教學互動促進師生情感,激發(fā)學生的學習興趣,提高學生抽象、概括、分析、綜合的能力

 、垲I(lǐng)會數(shù)學科學的應(yīng)用價值。

  (4)教學重點:指數(shù)函數(shù)的圖象和性質(zhì)。

  (5)教學難點:指數(shù)函數(shù)的圖象性質(zhì)與底數(shù)a的關(guān)系。

  突破難點的關(guān)鍵:尋找新知生長點,建立新舊知識的聯(lián)系,在理解概念的基礎(chǔ)上充分結(jié)合圖象,利用數(shù)形結(jié)合來掃清障礙。

  二、教法設(shè)計

  由于《指數(shù)函數(shù)》這節(jié)課的特殊地位,在本節(jié)課的教法設(shè)計中,我力圖通過這一節(jié)課的教學達到不僅使學生初步理解并能簡單應(yīng)用指數(shù)函數(shù)的知識,更期望能引領(lǐng)學生掌握研究初等函數(shù)圖象性質(zhì)的一般思路和方法,為今后研究其它的函數(shù)做好準備,從而達到培養(yǎng)學生學習能力的目的,我根據(jù)自己對“誘思探究”教學模式和“情景式”教學模式的認識,將二者結(jié)合起來,主要突出了幾個方面:

  1.創(chuàng)設(shè)問題情景.按照指數(shù)函數(shù)的在生活中的實際背景給出兩個實例,充分調(diào)動學生的學習興趣,激發(fā)學生的探究心理,順利引入課題,而這兩個例子又恰好為研究指數(shù)函數(shù)中底數(shù)大于1和底數(shù)大于0小于1的圖象做好了準備。

  2.強化“指數(shù)函數(shù)”概念.引導學生結(jié)合指數(shù)的有關(guān)概念來歸納出指數(shù)函數(shù)的定義,并向?qū)W生指出指數(shù)函數(shù)的形式特點,請學生思考對于底數(shù)a是否需要限制,如不限制會有什么問題出現(xiàn),這樣避免了學生對于底數(shù)a范圍分類的不清楚,也為研究指數(shù)函數(shù)的圖象做了“分類討論”的鋪墊。

  3.突出圖象的作用.在數(shù)學學習過程中,圖形始終使我們需要借助的重要輔助手段。一位數(shù)學家曾經(jīng)說過“數(shù)離形時少直觀,形離數(shù)時難入微”,而在研究指數(shù)函數(shù)的性質(zhì)時,更是直接由圖象觀察得出性質(zhì),因此圖象發(fā)揮了主要的作用。

  4.注意數(shù)學與生活和實踐的聯(lián)系.數(shù)學的本質(zhì)是來源于生活,服務(wù)于實踐。在課堂教學的引入、例題的講解和課外知識的拓展部分,都介紹了與指數(shù)函數(shù)息息相關(guān)的生活問題,力圖使學生了解到數(shù)學的基礎(chǔ)學科作用,培養(yǎng)學生的數(shù)學應(yīng)用意識。

  三、學法指導

  本節(jié)課是在學習完“指數(shù)”的概念和運算后編排的,針對學生實際情況,我主要在以下幾個方面做了嘗試:

  1.再現(xiàn)原有認知結(jié)構(gòu)。在引入兩個生活實例后,請學生回憶有關(guān)指數(shù)的概念,幫助學生再現(xiàn)原有認知結(jié)構(gòu),為理解指數(shù)函數(shù)的概念做好準備。

  2.領(lǐng)會常見數(shù)學思想方法。在借助圖象研究指數(shù)函數(shù)的性質(zhì)時會遇到分類討論、數(shù)形結(jié)合等基本數(shù)學思想方法,這些方法將會貫穿整個高中的數(shù)學學習。

  3.在互相交流和自主探究中獲得發(fā)展。在生活實例的課堂導入、指數(shù)函數(shù)的性質(zhì)研究、例題與訓練、課內(nèi)小節(jié)等教學環(huán)節(jié)中都安排了學生的討論、分組、交流等活動,讓學生變被動的接受和記憶知識為在合作學習的樂趣中主動地建構(gòu)新知識的框架和體系,從而完成知識的內(nèi)化過程。

  4.注意學習過程的循序漸進。在概念、圖象、性質(zhì)、應(yīng)用、拓展的過程中按照先易后難的順序?qū)訉舆f進,讓學生感到有挑戰(zhàn)、有收獲,跳一跳,夠得著,不同難度的題目設(shè)計將盡可能照顧到課堂學生的個體差異。

  四、程序設(shè)計

  在設(shè)計本節(jié)課的教學過程中,本著遵循學生的認知規(guī)律、讓學生去經(jīng)歷知識的形成與發(fā)展過程的原則,我設(shè)計了如下的教學程序,啟發(fā)學生逐步發(fā)現(xiàn)和認識指數(shù)函數(shù)的圖象和性質(zhì)。

  1.創(chuàng)設(shè)情景、導入新課

  教師活動:

 、儆秒娔X展示兩個實例,第一個是計算機價格下降問題,第二個是生物中細胞分裂的例子,

 、趯W生按奇數(shù)列、偶數(shù)列分組。

  學生活動:

 、俜謩e寫出計算機價格y與經(jīng)過月份x的關(guān)系式和細胞個數(shù)y與分裂次數(shù)x的關(guān)系式,并互相交流;

 、诨貞浿笖(shù)的概念;

 、蹥w納指數(shù)函數(shù)的概念;

 、芊治龀鰧χ笖(shù)函數(shù)底數(shù)討論的必要性以及分類的方法。

  設(shè)計意圖:通過生活實例激發(fā)學生的學習動機,,掃清由概念不清而造成的知識障礙,培養(yǎng)學生思維的主動性, 為突破難點做好準備;

  2.啟發(fā)誘導、探求新知

  教師活動:

  ①給出兩個簡單的指數(shù)函數(shù)并要求學生畫它們的圖象②在準備好的小黑板上規(guī)范地畫出這兩個指數(shù)函數(shù)的圖象③板書指數(shù)函數(shù)的性質(zhì)。

  學生活動:

 、佼嫵鰞蓚簡單的指數(shù)函數(shù)圖象

  ②交流、討論

 、蹥w納出研究函數(shù)性質(zhì)涉及的方面

 、芸偨Y(jié)出指數(shù)函數(shù)的性質(zhì)。

  設(shè)計意圖:讓學生動手作簡單的指數(shù)函數(shù)的圖象對深刻理解本節(jié)課的內(nèi)容有著一定的促進作用,在學生完成基本作圖之后,教師再利用課前已列表、建立坐標系的小黑板展示準確的作圖方法,達到進一步規(guī)范學生的作圖習慣的目的,然后借助“函數(shù)作圖器”用多媒體將指數(shù)函數(shù)的圖象推廣到一般情況,學生就會很自然的通過觀察圖象總結(jié)出指數(shù)函數(shù)的性質(zhì),同時對于底數(shù)的討論也就變得順理成章。

  3.鞏固新知、反饋回授

  教師活動:

 、侔鍟1

  ②板書例2第一問

 、劢榻B有關(guān)考古的拓展知識。

高中數(shù)學說課稿 篇4

  尊敬的各位專家、評委:

  大家好!

  我是盧龍縣木井中學數(shù)學教師xx,我今天說課的題目是:人教A版普通高中課程標準實驗教科書 數(shù)學必修5第一章第一節(jié)的第一課時《正弦定理》,依據(jù)新課程標準對教材的要求,結(jié)合我對教材的理解,我將從以下幾個方面說明我的設(shè)計和構(gòu)思。

  一、教材分析

  “解三角形”既是高中數(shù)學的基本內(nèi)容,又有較強的應(yīng)用性,在這次課程改革中,被保留下來,并獨立成為一章。這部分內(nèi)容從知識體系上看,應(yīng)屬于三角函數(shù)這一章,從研究方法上看,也可以歸屬于向量應(yīng)用的一方面。從某種意義講,這部分內(nèi)容是用代數(shù)方法解決幾何問題的典型內(nèi)容之一。而本課“正弦定理”,作為單元的起始課,是在學生已有的三角函數(shù)及向量知識的基礎(chǔ)上,通過對三角形邊角關(guān)系作量化探究,發(fā)現(xiàn)并掌握正弦定理(重要的解三角形工具),通過這一部分內(nèi)容的學習,讓學生從“實際問題”抽象成“數(shù)學問題”的建模過程中,體驗 “觀察——猜想——證明——應(yīng)用”這一思維方法,養(yǎng)成大膽猜想、善于思考的品質(zhì)和勇于求真的精神。同時在解決問題的過程中,感受數(shù)學的力量,進一步培養(yǎng)學生對數(shù)學的學習興趣和“用數(shù)學”的意識。

  二、學情分析

  我所任教的學校是我縣一所農(nóng)村普通中學,大多數(shù)學生基礎(chǔ)薄弱,對“一些重要的數(shù)學思想和數(shù)學方法”的應(yīng)用意識和技能還不高。但是,大多數(shù)學生對數(shù)學的興趣較高,比較喜歡數(shù)學,尤其是象本節(jié)課這樣與實際生活聯(lián)系比較緊密的內(nèi)容,相信學生能夠積極配合,有比較不錯的表現(xiàn)。

  三、教學目標

  1、知識和技能:在創(chuàng)設(shè)的問題情境中,引導學生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡單運用正弦定理解決一些簡單的解三角形問題。

  過程與方法:學生參與解題方案的探索,嘗試應(yīng)用觀察——猜想——證明——應(yīng)用”等思想方法,尋求最佳解決方案,從而引發(fā)學生對現(xiàn)實世界的一些數(shù)學模型進行思考。

  情感、態(tài)度、價值觀:培養(yǎng)學生合情合理探索數(shù)學規(guī)律的數(shù)學思想方法,通過平面幾何、三角形函數(shù)、正弦定理、向量的數(shù)量積等知識間的聯(lián)系來體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一。同時,通過實際問題的探討、解決,讓學生體驗學習成就感,增強數(shù)學學習興趣和主動性,鍛煉探究精神。樹立“數(shù)學與我有關(guān),數(shù)學是有用的,我要用數(shù)學,我能用數(shù)學”的理念。

  2、教學重點、難點

  教學重點:正弦定理的發(fā)現(xiàn)與證明;正弦定理的簡單應(yīng)用。

  教學難點:正弦定理證明及應(yīng)用。

  四、教學方法與手段

  為了更好的達成上面的教學目標,促進學習方式的轉(zhuǎn)變,本節(jié)課我準備采用“問題教學法”,即由教師以問題為主線組織教學,利用多媒體和實物投影儀等教學手段來激發(fā)興趣、突出重點,突破難點,提高課堂效率,并引導學生采取自主探究與相互合作相結(jié)合的學習方式參與到問題解決的過程中去,從中體驗成功與失敗,從而逐步建立完善的認知結(jié)構(gòu)。

  五、教學過程

  為了很好地完成我所確定的教學目標,順利地解決重點,突破難點,同時本著貼近生活、貼近學生、貼近時代的原則,我設(shè)計了這樣的教學過程:

  (一)創(chuàng)設(shè)情景,揭示課題

  問題1:寧靜的夜晚,明月高懸,當你仰望夜空,欣賞這美好夜色的時候,會不會想要知道:那遙不可及的月亮離我們究竟有多遠呢?

  1671年兩個法國天文學家首次測出了地月之間的距離大約為 385400km,你知道他們當時是怎樣測出這個距離的嗎?

  問題2:在現(xiàn)在的高科技時代,要想知道某座山的高度,沒必要親自去量,只需水平飛行的飛機從山頂一過便可測出,你知道這是為什么嗎?還有,交通警察是怎樣測出正在公路上行駛的汽車的速度呢?要想解決這些問題, 其實并不難,只要你學好本章內(nèi)容即可掌握其原理。(板書課題《解三角形》)

  [設(shè)計說明]引用教材本章引言,制造知識與問題的沖突,激發(fā)學生學習本章知識的興趣。

  (二)特殊入手,發(fā)現(xiàn)規(guī)律

  問題3:在初中,我們已經(jīng)學習了《銳角三角函數(shù)和解直角三角形》這一章,老師想試試你的實力,請你根據(jù)初中知識,解決這樣一個問題。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把這個直角三角形中的所有的邊和角用一個表達式表示出來嗎?

  引導啟發(fā)學生發(fā)現(xiàn)特殊情形下的正弦定理

  (三)類比歸納,嚴格證明

  問題4:本題屬于初中問題,而且比較簡單,不夠刺激,現(xiàn)在如果我為難為難你,讓你也當一回老師,如果有個學生把條件中的Rt⊿ABC不小心寫成了銳角⊿ABC,其它沒有變,你說這個結(jié)論還成立嗎?

  [設(shè)計說明]此時放手讓學生自己完成,如果感覺自己解決有困難,學生也可以前后桌或同桌結(jié)組研究,鼓勵學生用不同的方法證明這個結(jié)論,在巡視的過程中讓不同方法的學生上黑板展示,如果沒有用向量的學生,教師引導提示學生能否用向量完成證明。

  問題5:好根據(jù)剛才我們的研究,說明這一結(jié)論在直角三角形和銳角三角形中都成立,于是,我們是否有了更為大膽的猜想,把條件中的銳角⊿ABC改為角鈍角⊿ABC,其它不變,這個結(jié)論仍然成立?我們光說成立不行,必須有能力進行嚴格的理論證明,你有這個能力嗎?下面我希望你能用實力告訴我,開始。(啟發(fā)引導學生用多種方法加以研究證明,尤其是向量法,在下節(jié)余弦定理的證明中還要用,因此務(wù)必啟發(fā)學生用向量法完成證明。)

  [設(shè)計說明] 放手給學生實踐的機會和時間,使學生真正的參與到問題解決的過程中去,讓學生在學數(shù)學的實踐中去感悟和提高數(shù)學的思維方法和思維習慣。同時,考慮到有部分同學基礎(chǔ)較差,考個人或小組可能無法完成探究任務(wù),教師在學生動手的同時,通過巡查,讓提前證明出結(jié)論的同學上黑板完成,這樣做一方面肯定了先完成的同學的先進性,鍛煉了上黑板同學的解題過程的書寫規(guī)范性,同時,也讓從無從下手的同學有個參考,不至于閑呆著浪費時間。

  問題6:由此,你能否得到一個更一般的結(jié)論?你能用比較精煉的語言把它概括一下嗎?好,這就是我們這節(jié)課研究的主要內(nèi)容,大名鼎鼎的正弦定理(此時板書課題并用紅色粉筆標示出正弦定理內(nèi)容)

  教師講解:告訴大家,其實這個大名鼎鼎的正弦定理是由伊朗著名的天文學家阿布爾─威發(fā)﹝940-998﹞首先發(fā)現(xiàn)與證明的。中亞細亞人阿爾比魯尼﹝973-1048﹞給三角形的正弦定理作出了一個證明。也有說正弦定理的證明是13世紀的阿塞拜疆人納速拉丁在系統(tǒng)整理前人成就的基礎(chǔ)上得出的。不管怎樣,我們說在1000年以前,人們就發(fā)現(xiàn)了這個充滿著數(shù)學美的結(jié)論,不能不說也是人類數(shù)學史上的一個奇跡。老師希望21世紀的你能在今后的學習中也研究出一個被后人景仰的某某定理來,到那時我也就成了數(shù)學家的老師了。當然,老師的希望能否變成現(xiàn)實,就要看大家的了。

  [設(shè)計說明] 通過本段內(nèi)容的講解,滲透一些數(shù)學史的內(nèi)容,對學生不僅有數(shù)學美得熏陶,更能激發(fā)學生學習科學文化知識的熱情。

  (四)強化理解,簡單應(yīng)用

  下面請大家看我們的教材2-3頁到例題1上邊,并自學解三角形定義。

  [設(shè)計說明] 讓學生看看書,放慢節(jié)奏,有利于學生消化和吸收剛才的內(nèi)容,同時教師可以利用這段時間對個別學困生進行輔導,以減少掉隊的同學數(shù)量,同時培養(yǎng)學生養(yǎng)成自覺看書的好習慣。

  我們學習了正弦定理之后,你覺得它有什么應(yīng)用?在三角形中他能解決那些問題呢? 我們先小試牛刀,來一個簡單的問題:

  問題7:(教材例題1)⊿ABC中,已知A=30,B=75,a=40cm,解三角形。

  (本題簡單,找兩位同學上黑板完成,其他同學在底下練習本上完成,同學可以小聲音討論,完成后教師根據(jù)學生實踐中發(fā)現(xiàn)的問題給予必要的講評)

  [設(shè)計說明] 充分給學生自己動手的時間和機會,由于本題是唯一解,為將來學生感悟什么情況下三角形有唯一解創(chuàng)造條件。

  強化練習

  讓全體同學限時完成教材4頁練習第一題,找兩位同學上黑板。

  問題8:(教材例題2)在⊿ABC中a=20cm,b=28cm,A=30,解三角形。

  [設(shè)計說明]例題2較難,目的是使學生明確,利用正弦定理有兩種可能,同時,引導學生對比例題1研究,在什么情況下解三角形有唯一解?為什么?對學有余力的同學鼓勵他們自學探究與發(fā)現(xiàn)教材8頁得內(nèi)容:《解三角形的進一步討論》

  (五)小結(jié)歸納,深化拓展

  1、正弦定理

  2、正弦定理的證明方法

  3、正弦定理的應(yīng)用

  4、涉及的數(shù)學思想和方法。

  [設(shè)計說明] 師生共同總結(jié)本節(jié)課的收獲的同時,引導學生學會自己總結(jié),讓學生進一步回顧和體會知識的形成、發(fā)展、完善的過程。

  (六)布置作業(yè),鞏固提高

  1、教材10頁習題1.1A組第1題。

  2、學有余力的同學探究10頁B組第1題,體會正弦定理的其他證明方法。

  證明:設(shè)三角形外接圓的半徑是R,則a=2RsinA,b=2RsinB, c=2RsinC

  [設(shè)計說明] 對不同水平的學生設(shè)計不同梯度的作業(yè),尊重學生的個性差異,有利于因材施教的教學原則的貫徹。

高中數(shù)學說課稿 篇5

  一、本節(jié)內(nèi)容的地位與重要性

  "分類計數(shù)原理與分步計數(shù)原理"是《高中數(shù)學》一節(jié)獨特內(nèi)容。這一節(jié)課與排列、組合的基本概念有著緊密的聯(lián)系,通過對這一節(jié)課的學習,既可以讓學生接受、理解分類計數(shù)原理與分步計數(shù)原理,還為日后排列、組合和二項式定理的教學做好準備,起到奠基的重要作用。

  二、關(guān)于教學目標的確定

  根據(jù)兩個基本原理的地位和作用,我認為本節(jié)課的教學目標是:

  (1)使學生正確理解兩個基本原理的概念;

 。2)使學生能夠正確運用兩個基本原理分析、解決一些簡單問題;

 。3)提高分析、解決問題的能力

 。4)使學生樹立"由個別到一般,由一般到個別"的認識事物的辯證唯物主義哲學思想觀點。

  三、關(guān)于教學重點、難點的選擇和處理

  中學數(shù)學課程中引進的關(guān)于排列、組合的計算公式都是以兩個計數(shù)原理為基礎(chǔ)的,而一些較復雜的排列、組合應(yīng)用題的求解,更是離不開兩個基本原理,所以正確理解兩個基本原理并能解決實際問題是學習本章的重點內(nèi)容。

  正確使用兩個基本原理的前提是要學生清楚兩個基本原理使用的條件。而原理中提到的分步和分類,學生不是一下子就能理解深刻的,面對復雜的事物和現(xiàn)象學生對分類和分步的選擇容易產(chǎn)生錯誤的認識,所以分類計數(shù)原理和分步計數(shù)原理的準確應(yīng)用是本節(jié)課的教學難點。必需使學生認清兩個基本原理的實質(zhì)就是完成一件事需要分類還是分步,才能使學生接受概念并對如何運用這兩個基本原理有正確清楚的認識。教學中兩個基本問題的引用及引伸,就是為突破難點做準備。

  四、關(guān)于教學方法和教學手段的選用

  根據(jù)本節(jié)課的內(nèi)容及學生的實際水平,我采取啟發(fā)引導式教學方法并充分發(fā)揮電腦多媒體的輔助教學作用。

  啟發(fā)引導式作為一種啟發(fā)式教學方法,體現(xiàn)了認知心理學的基本理論。符合教學論中的自覺性和積極性、鞏固性、可接受性、教學與發(fā)展相結(jié)合、教師的主導作用與學生的主體地位相統(tǒng)一等原則,教學過程中,教師采用點撥的方法,啟發(fā)學生通過主動思考、動手操作來達到對知識的"發(fā)現(xiàn)"和接受,進而完成知識的內(nèi)化,使書本的知識成為自己的知識。

  電腦多媒體以聲音、動畫、影像等多種形式強化對學生感觀的刺激,這一點是粉筆和黑板所不能比擬的,采取這種形式,可以極大提高學生的學習興趣,加大一堂課的信息容量,使教學目標更完美地體現(xiàn)。另外,電腦軟件具有良好的交互性,可以將教師的思路和策略以軟件的形式來體現(xiàn),更好地為教學服務(wù)。

  五、關(guān)于學法的指導

  "授人以魚,不如授人以漁",在教學過程中,不但要傳授學生課本知識,還要培養(yǎng)學生主動觀察、主動思考、自我發(fā)現(xiàn)的學習能力,增強學生的綜合素質(zhì),從而達到教學的目標。教學中,教師創(chuàng)設(shè)疑問,學生想辦法解決疑問,通過教師的啟發(fā)點撥,類比推理,在積極的雙邊活動中,學生找到了解決疑難的方法。整個過程貫穿"設(shè)疑"——"思索"——"發(fā)現(xiàn)"——"解惑"四個環(huán)節(jié),學生隨時對所學知識產(chǎn)生有意注意,思想上經(jīng)歷了從肯定到否定、又從否定到肯定的辨證思維過程,符合學生認知水平,培養(yǎng)了學習能力。

  六、關(guān)于教學程序的設(shè)計

 。ㄒ唬┱n題導入

  這是本章的第一節(jié)課,是起始課,講起始課時,把這一學科的內(nèi)容作一個大概的介紹,能使學生從一開始就對將要學習的知識有一個初步的了解,并為下面的學習打下思想基礎(chǔ)。所以,首先閱讀引言,明確任務(wù),激發(fā)興趣。由學生感興趣的乒乓球比賽提出問題,引出學習本節(jié)的必要性,明確研究計數(shù)方法是本章內(nèi)容的獨特性,從應(yīng)用的廣泛看學習本章內(nèi)容的重要性。同時板書課題(分類計數(shù)原理與分步計數(shù)原理)

  這樣做,能使學生明白本節(jié)內(nèi)容的地位和作用,激發(fā)其學習新知識的欲望,為順利完成教學任務(wù)做好思維上的準備。

 。ǘ┬抡n講授

  通過幻燈片給出問題,配圖分析,講清坐火車與坐汽車兩類方法均可,每類中任一種辦法都可以獨立地把從甲地到乙地這件事辦好。

  緊跟著給出:

  引申1:若甲地到乙地一天中還有4班輪船可乘,那么一天中,坐這些交通工具從甲地到一點共有多少種不同的走法?

  引伸2:若完成一件事,有 類辦法。在第1類辦法中有 種不同方法,在第2類辦法中有 種不同的方法,……,在第 類辦法中有 種不同方法,每一類中的每一種方法均可完成這件事,那么完成這件事共有多少種不同方法?

  這個問題的兩個引申由漸入深、循序漸進為學生接受分類計數(shù)原理做好了準備。

  板書分類計數(shù)原理內(nèi)容:

  完成一件事,有 類辦法。在第1類辦法中有 種不同方法,在第2類辦法中有 種不同的方法,……,在第 類辦法中有 種不同方法,那么完成這件事共有 種不同的方法。(也稱加法原理)

  此時,趁學生對于原理有了一個較清晰的認識,引導學生分析分類計數(shù)原理內(nèi)容,啟發(fā)總結(jié)得下面三點注意:(出示幻燈片)

 。1)各分類之間相互獨立,都能完成這件事;

 。2)根據(jù)問題的特點在確定的分類標準下進行分類;

 。3)完成這件事的任何一種方法必屬于某一類,并且分別屬于不同兩類的兩種方法都是不同的方法。

  這樣做加深學生對分類計數(shù)原理的正確理解,突出了重點,突破了難點。

  接下來給出問題2:(出示幻燈片)

  由A村去B村的道路有3條,由B村去C村的道路有2條(見圖9-1),從A村經(jīng)B村去C村,共有多少種不同的走法?

  提出問題:問題1與問題2同是研究從甲地到乙地的不同走法,請找出這兩個問題的不之處?學生會發(fā)現(xiàn)問題1中采用乘火車或乘汽車都可以從甲地到乙地,而問題2中必須經(jīng)過先乘火車后乘汽車兩個步驟才能完成從甲地到乙地這件事。

  問題2的講授采用給出問題,配圖分析,組織討論,強調(diào)分步。用多媒體配不同的顏色閃現(xiàn)出六種不同的走法,讓學生列式求出不同走法數(shù),并列舉所有走法。

  歸納得出:分步計數(shù)原理(板書原理內(nèi)容)

  分步計數(shù)原理:做一件事,完成它需要分成n個步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法。那么,完成這件事共有

  N=m1×m2×…×mn

  種不同的方法。

  同樣趁學生對定理有一定的認識,引導學生分析分步計數(shù)原理內(nèi)容,啟發(fā)總結(jié)得下面三點注意:(出示幻燈片)

 。1) 各步驟相互依存,只有各個步驟完成了,這件事才算完成;

 。2) 根據(jù)問題的特點在確定的分步標準下分步;

 。3) 分步時要注意滿足完成一件事必須并且只需連續(xù)完成這N個步驟這件事才算完成。

 。ㄈ⿷(yīng)用舉例

  教材例1:(書架取書問題)引導學生分析解答,注意區(qū)分是分類還是分步。

  例2:由數(shù)字0,1,2,3,4可以組成多少個三位整數(shù)(各位上的數(shù)字允許重復)?本題設(shè)置了4個問題:

 。1) 每一個三位數(shù)是由什么構(gòu)成的?(三個整數(shù)字)

 。2) 023是一個三位數(shù)嗎?(百位上不能是0)

 。3) 組成一個三位數(shù)需要怎么做?(分成三個步驟來完成:第一步確定百位上的數(shù)字;第二步確定十位上的數(shù)字;第三步確定個位上的數(shù)字)

 。4) 怎樣表述?

  教師巡視指導、并歸納

  解:要組成一個三位數(shù),需要分成三個步驟:第一步確定百位上的數(shù)字,從1~4這4個數(shù)字中任選一個數(shù)字,有4種選法;第二步確定十位上的數(shù)字,由于數(shù)字允許重復,共有5種選法;第三步確定個位上的數(shù)字,仍有5種選法。根據(jù)分步計數(shù)原理,得到可以組成的三位整數(shù)的個數(shù)是N=4×5×5=100.

  答:可以組成100個三位整數(shù)。

  (教師的連續(xù)發(fā)問、啟發(fā)、引導,幫助學生找到正確的解題思路和計算方法,使學生的分析問題能力有所提高。

  教師在第二個例題中給出板書示范,能幫助學生進一步加深對兩個基本原理實質(zhì)的理解,周密的考慮,準確的表達、規(guī)范的書寫,對于學生周密思考、準確表達、規(guī)范書寫良好習慣的形成有著積極的促進作用,也可以為學生后面應(yīng)用兩個基本原理解排列、組合綜合題打下基礎(chǔ))

  (四)歸納小結(jié)

  師:什么時候用分類計數(shù)原理、什么時候用分步計數(shù)原理呢?

  生:分類時用分類計數(shù)原理,分步時用分步計數(shù)原理。

  師:應(yīng)用兩個基本原理時需要注意什么呢?

  生:分類時要求各類辦法彼此之間相互排斥;分步時要求各步是相互獨立的。

 。ㄎ澹┱n堂練習

  P222:練習1~4.學生板演第4題

 。▽τ陬}4,教師有必要對三個多項式乘積展開后各項的構(gòu)成給以提示)

 。┎贾米鳂I(yè)

  P222:練習5,6,7.

  補充題:

  1.在所有的兩位數(shù)中,個位數(shù)字小于十位數(shù)字的共有多少個?

 。ㄌ崾荆喊词簧蠑(shù)字的大小可以分為9類,共有9+8+7+…+2+1=45個個位數(shù)字小于十位數(shù)字的`兩位數(shù))

  2.某學生填報高考志愿,有m個不同的志愿可供選擇,若只能按第一、二、三志愿依次填寫3個不同的志愿,求該生填寫志愿的方式的種數(shù)。

  (提示:需要按三個志愿分成三步。共有m(m-1)(m-2)種填寫方式)

  3.在所有的三位數(shù)中,有且只有兩個數(shù)字相同的三位數(shù)共有多少個?

  (提示:可以用下面方法來求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)類中每類都是9×9種,共有9×9+9×9+9×9=3×9×9=243個只有兩個數(shù)字相同的三位數(shù))

  4.某小組有10人,每人至少會英語和日語中的一門,其中8人會英語,5人會日語,(1)從中任選一個會外語的人,有多少種選法?(2)從中選出會英語與會日語的各1人,有多少種不同的選法?

 。ㄌ崾荆河捎8+5=13>10,所以10人中必有3人既會英語又會日語。(1)N=5+2+3;(2)N=5×2+5×3+2×3)

  只要大家用心學習,認真復習,就有可能在高中的戰(zhàn)場上考取自己理想的成績。

高中數(shù)學說課稿 篇6

各位同仁,各位專家:

  我說課的課題是《任意角的三角函數(shù)》,內(nèi)容取自蘇教版高中實驗教科書《數(shù)學》第四冊 第1。2節(jié)

  先對教材進行分析

  教學內(nèi)容:任意角三角函數(shù)的定義、定義域,三角函數(shù)值的符號。

  地位和作用: 任意角的三角函數(shù)是本章教學內(nèi)容的基本概念對三角內(nèi)容的整體學習至關(guān)重要。同時它又為平面向量、解析幾何等內(nèi)容的學習作必要的準備,通過這部分內(nèi)容的學習,又可以幫助學生更加深入理解函數(shù)這一基本概念。所以這個內(nèi)容要認真探討教材,精心設(shè)計過程。

  教學重點:任意角三角函數(shù)的定義

  教學難點:正確理解三角函數(shù)可以看作以實數(shù)為自變量的函數(shù)、初中用邊長比值來定義轉(zhuǎn)變?yōu)樽鴺讼迪掠米鴺吮戎刀x的觀念的轉(zhuǎn)換以及坐標定義的合理性的理解;

  學情分析:

  學生已經(jīng)掌握的內(nèi)容,學生學習能力

  1。初中學生已經(jīng)學習了基本的銳角三角函數(shù)的定義,掌握了銳角三角函數(shù)的一些常見的知識和求法。

  2。我們南山區(qū)經(jīng)過多年的初中課改,學生已經(jīng)具備較強的自學能力,多數(shù)同學對數(shù)學的學習有相當?shù)呐d趣和積極性。

  3。在探究問題的能力,合作交流的意識等方面發(fā)展不夠均衡,尚有待加強必須在老師一定的指導下才能進行

  針對對教材內(nèi)容重難點的和學生實際情況的分析我們制定教學目標如下

  知識目標:

 。1)任意角三角函數(shù)的定義;三角函數(shù)的定義域;三角函數(shù)值的符號,

  能力目標:

 。1)理解并掌握任意角的三角函數(shù)的定義;

 。2)正確理解三角函數(shù)是以實數(shù)為自變量的函數(shù);

 。3)通過對定義域,三角函數(shù)值的符號的推導,提高學生分析探究解決問題的能力。

  德育目標:

  (1)學習轉(zhuǎn)化的思想,(2)培養(yǎng)學生嚴謹治學、一絲不茍的科學精神;

  針對學生實際情況為達到教學目標須精心設(shè)計教學方法

  教法學法:溫故知新,逐步拓展

  (1)在復習初中銳角三角函數(shù)的定義的基礎(chǔ)上一步一步擴展內(nèi)容,發(fā)展新知識,形成新的概念;

 。2)通過例題講解分析,逐步引出新知識,完善三角定義

  運用多媒體工具

 。1)提高直觀性增強趣味性。

  教學過程分析

  總體來說, 由舊及新,由易及難,

  逐步加強,逐步推進

  先由初中的直角三角形中銳角三角函數(shù)的定義

  過度到直角坐標系中銳角三角函數(shù)的定義

  再發(fā)展到直角坐標系中任意角三角函數(shù)的定義

  給定定義后通過應(yīng)用定義又逐步發(fā)現(xiàn)新知識拓展完善定義。

  具體教學過程安排

  引入: 復習提問:初中直角三角形中銳角的正弦余弦正切是怎樣定義的?

  由學生回答

  SinA=對邊/斜邊=BC/AB

  cosA=對邊/斜邊=AC/AB

  tanA=對邊/斜邊=BC/AC

  逐步拓展:在高中我們已經(jīng)建立了直角坐標系, 把“定義媒介”從直角三角形改為平面直角坐標系。

  我們知道,隨著角的概念的推廣,研究角時多放在直角坐標系里, 那么三角函數(shù)的定義能否也放到坐標系去研究呢?

  引導學生發(fā)現(xiàn)B的坐標和邊長的關(guān)系。進一步啟發(fā)他們發(fā)現(xiàn)由于相似三角形的相似比導致OB上任一P點都可以代換B,把三角函數(shù)的定義發(fā)展到用終邊上任一點的坐標來表示, 從而銳角三角函數(shù)可以使用直角坐標系來定義,自然地,要想定義任意一個角三角函數(shù),便考慮放在直角坐標中進行合理進行定義了

  從而得到

  知識點一:任意一個角的三角函數(shù)的定義

  提醒學生思考:由于相似比相等,對于確定的角A ,這三個比值的大小和P點在角的終邊上的位置無關(guān)。

  精心設(shè)計例題,引出新內(nèi)容深化概念,完善定義

  例1已知角A 的終邊經(jīng)過P(2,—3),求角A的三個三角函數(shù)值

  (此題由學生自己分析獨立動手完成)

  例題變式1,已知角A 的大小是30度,由定義求角A的三個三角函數(shù)值

  結(jié)合變式我們發(fā)現(xiàn)三個三角函數(shù)值的大小與角的大小有關(guān),只會隨角的大小而變化,符合當初函數(shù)的定義,而我們又一直稱呼為三角函數(shù),

  提出問題:這三個新的定義確實問是函數(shù)嗎?為什么?

  從而引出函數(shù)極其定義域

  由學生分析討論,得出結(jié)論

  知識點二:三個三角函數(shù)的定義域

  同時教師強調(diào):由于弧度制使角和實數(shù)建立了一一對應(yīng)關(guān)系,所以三角函數(shù)是以實數(shù)為自變量的函數(shù)

  例題變式2, 已知角A 的終邊經(jīng)過P(—2a,—3a)( a不為0),求角A的三個三角函數(shù)值

  解答中需要對變量的正負即角所在象限進行討論, 讓學生意識到三角函數(shù)值的正負與角所在象限有關(guān),從而導出第三個知識點

  知識點三:三角函數(shù)值的正負與角所在象限的關(guān)系

  由學生推出結(jié)論,教師總結(jié)符號記憶方法,便于學生記憶

  例題2:已知A在第二象限且 sinA=0。2 求cosA,tanA

  求cosA,tanA

  綜合練習鞏固提高,更為下節(jié)的同角關(guān)系式打下基礎(chǔ)

  拓展,如果不限制A的象限呢,可以留作課外探討

  小結(jié)回顧課堂內(nèi)容

  課堂作業(yè)和課外作業(yè)以加強知識的記憶和理解

  課堂作業(yè)P16 1,2,4

 。▽W生演板,后集體討論修訂答案同桌討論,由學生回答答案)

  課后分層作業(yè)(有利于全體學生的發(fā)展)

  必作P23 1(2),5(2),6(2)(4) 選作P23 3,4

  板書設(shè)計(見PPT)

高中數(shù)學說課稿 篇7

  開始:各位專家領(lǐng)導, 好!

  今天我將要為大家講的課題是

  首先,我對本節(jié)教材進行一些分析

  一、教材結(jié)構(gòu)與內(nèi)容簡析

  本節(jié)內(nèi)容在全書及章節(jié)的地位:《 》是高中數(shù)學新教材第 冊( )第 章第 節(jié)。在此之前,學生已學習了

  ,這為過渡到本節(jié)的學習起著鋪墊作用。本節(jié)內(nèi)容是 部分,因此,在 中,占據(jù) 的地位。

  數(shù)學思想方法分析:作為一名數(shù)學老師,不僅要傳授給學生數(shù)學知識,更重要的是傳授給學生數(shù)學思想、數(shù)學意識,因此本節(jié)課在教學中力圖向?qū)W生:

  二、 教學目標

  根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學生已有的認知結(jié)構(gòu)心理特征,制定如下教學目標:

  1 基礎(chǔ)知識目標:

  2 能力訓練目標:

  3 創(chuàng)新素質(zhì)目標:

  4 個性品質(zhì)目標:

  三、 教學重點、難點、關(guān)鍵

  本著課程標準,在吃透教材基礎(chǔ)上,我確立了如下的教學重點、難點

  重點: 通過 突出重點

  難點: 通過 突破難點

  關(guān)鍵:

  下面,為了講清重點、難點,使學生能達到本節(jié)設(shè)定的教學目標,我再從教法和學法上談?wù)劊?/p>

  四、 教法

  數(shù)學是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學科,因此,在教學中,不僅要使學生

  “知其然”而且要使學生“知其所以然”,

  我們在以師生既為主體,又為客體的原則下,展現(xiàn)獲取知識和方法的思維過程;诒竟(jié)課的特點:

  ,應(yīng)著重采用 的教學方法。即:

  五、 學法

  我們常說:“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學習方法的人”,因而在教學中要特別重視學法的指導。

  1、理論:

  2、實踐:

  3、能力:

  最后我來具體談一談這一堂課的教學過程:

  六、 教學程序及設(shè)想

  1、由 引入:

  把教學內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學生產(chǎn)生強烈的問題意識,使學生的整個學習過程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過程。

  在實際情況下進行學習,可以使學生利用已有知識與經(jīng)驗,同化和索引出當前學習的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問題情境中。

  對于本題:

  2、由實例得出本課新的知識點是:

  3、講解例題。

  我們在講解例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進行概括,有利于發(fā)展學生的思維能力。在題中:

  4、能力訓練。

  課后練習

  使學生能鞏固羨慕自覺運用所學知識與解題思想方法。

  5、總結(jié)結(jié)論,強化認識。

  知識性內(nèi)容的小結(jié),可把課堂教學傳授的知識盡快化為學生的素質(zhì);數(shù)學思想方法的小結(jié),可使學生更深刻地理解數(shù)學思想方法在解題中的地位和應(yīng)用,并且逐漸培養(yǎng)學生的良好的個性品質(zhì)目標。

  6、變式延伸,進行重構(gòu)。

  重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的串聯(lián)、累積、加工,從而達到舉一反三的效果。

  7、板書。

  8、布置作業(yè)。

  針對學生素質(zhì)的差異進行分層訓練,既使學生掌握基礎(chǔ)知識,又使學有佘力的學生有所提高,從而達到拔尖和“減負”的目的。

  結(jié)束:說課是教師面對同行和其它聽眾口頭講述具體課題的教學設(shè)想及其根據(jù)的新的教學研究形式。以上,我僅從說教材,說學情,說教法,說學法,說教學程序上說明了“教什么”和“怎么教”,闡明了“為什么這樣教”。說課對我們大家仍是新事物,今后我也將進一步說好課,并希望各位專家領(lǐng)導對本堂說課提出寶貴意見。

  注意時間掌握

  六、注意靈活導入新知識點。

  電腦課件

  使用投影

  根據(jù)時間進行增刪

高中數(shù)學說課稿 篇8

  1、教學目標:

  一、借助單位圓理解任意角的三角函數(shù)的定義。

  二、根據(jù)三角函數(shù)的定義,能夠判斷三角函數(shù)值的符號。

  三、通過學生積極參與知識的"發(fā)現(xiàn)"與"形成"的過程,培養(yǎng)合情猜測的能力,從中感悟數(shù)學概念的嚴謹性與科學性。

  四、讓學生在任意角三角函數(shù)概念的形成過程中,體會函數(shù)思想,體會數(shù)形結(jié)合思想。

  2、教學重點與難點:

  重點:任意角的正弦、余弦、正切的定義;三角函數(shù)值的符號。

  難點:任意角的三角函數(shù)概念的建構(gòu)過程。

  授課過程:

  一、引入

  在我們的現(xiàn)實世界中的許多運動變化都有循環(huán)往復、周而復始的現(xiàn)象,這種變化規(guī)律稱為周期性。如何用數(shù)學的方法來刻畫這種變化?從這節(jié)課開始,我們要來學習刻畫這種規(guī)律的數(shù)學模型之一――三角函數(shù)。

  二、創(chuàng)設(shè)情境

  三角函數(shù)是與角有關(guān)的函數(shù),在學習任意角概念時,我們知道在直角坐標系中研究角,可以給學習帶來許多方便,比如我們可以根據(jù)角終邊的位置把它們進行歸類,現(xiàn)在大家考慮:若在直角坐標系中來研究銳角,則銳角三角函數(shù)又可怎樣定義呢?

  學生情況估計:學生可能會提出兩種定義的方式,一種定義為邊之比,另一種定義在比值中引入了終邊上的一點P的坐標。

  問題:

  1、銳角三角函數(shù)能否表示成第二種比值方式?

  2、點P能否取在終邊上的其它位置?為什么?

  3、點P在哪個位置,比值會更簡潔?(引出單位圓的定義)。指出sina=mP的函數(shù)依舊表示一個比值,不過其分母為1而已。

  練習:計算的各三角函數(shù)值。

  三、任意角的三角函數(shù)的定義

  角的概念已經(jīng)推廣道了任意角,那么三角函數(shù)的定義在任意角的范圍里改怎么定義呢?

  嘗試:根據(jù)銳角三角函數(shù)的定義,你能嘗試著給出任意角三角函數(shù)的定義嗎?

  評價學生給出的定義。給出任意角三角函數(shù)的定義。

  四、解析任意角三角函數(shù)的定義

  三角函數(shù)首先是函數(shù)。你能從函數(shù)觀點解析三角函數(shù)嗎?(定義域)

  對于確定的角a,上面三個函數(shù)值都是唯一確定的,所以,正弦、余弦、正切都是以角為自變量,以單位圓上點的坐標或坐標的比值為函數(shù)值的函數(shù),我們將它們統(tǒng)稱為三角函數(shù)。由于角的集合和實數(shù)集之間可以建立一一對應(yīng)的關(guān)系,三角函數(shù)可以看成是自變量為實數(shù)的函數(shù)。

  五、三角函數(shù)的應(yīng)用。

  1、已知角,求a的三角函數(shù)值。

  2、已知角a終邊上的一點P(-3,-4),求各三角函數(shù)值。

  以上兩道書上的例題,讓學生自習看書,學生看書的同時,老師提出問題:

  1、已知角如何求三角函數(shù)值?

  2、利用角a的終邊上任意一點的坐標也可以定義三角函數(shù),你能給出這種定義嗎?(這種定義與課本中給出的定義各有什么特點?)

  3、變式:已知角a終邊上點P(-3b,-4b),(b0),求角a的各三角函數(shù)值。

  4、探究:三角函數(shù)的值在各象限的符號。

  六、小結(jié)及作業(yè)

  教案設(shè)計說明:

  新教材的教學理念之一是讓學生去體驗新知識的發(fā)生過程,這節(jié)《任意角三角函數(shù)》的教案,主要圍繞這一點來設(shè)計。

  首先,角的概念推廣了,那么銳角三角函數(shù)的定義是否也該推廣到任意角的三角函數(shù)的定義呢?通過這個問題,讓學生體會到新知識的發(fā)生是可能的,自然的。

  其次,到底應(yīng)該怎樣去合理定義任意角的三角函數(shù)呢?讓學生提出自己的想法,同時讓學生去辨證這個想法是否是科學的?因為一個概念是嚴謹?shù)模茖W的,不能隨心所欲地編造,必須去論證它的合理性,至少這種概念不能和銳角三角函數(shù)的定義有所沖突。在這個立-破的過程中,讓學生去體驗一個新的數(shù)學概念可能是如何形成,在形成的過程中可以從哪些角度加以科學的辯思。這樣也有助于學生對任意角三角函數(shù)概念的理解。

  再次,讓學生充分體會在任意角三角函數(shù)定義的推廣中,是如何將直角三角形這個"形"的問題,轉(zhuǎn)換到直角坐標系下點的坐標這個"數(shù)"的過程的。培養(yǎng)數(shù)形結(jié)合的思想。

高中數(shù)學說課稿 篇9

  一、教材分析:

  1.教材所處的地位和作用:

  本節(jié)內(nèi)容在全書和章節(jié)中的作用是:《1.3.1柱體、錐體、臺體的表面積》是高中數(shù)學教材數(shù)學2第一章空間幾何體3節(jié)內(nèi)容。在此之前學生已學習了空間幾何體的結(jié)構(gòu)、三視圖和直觀圖為基礎(chǔ),這為過渡到本節(jié)的學習起著鋪墊作用。本節(jié)內(nèi)容是在空間幾何中,占據(jù)重要的地位。以及為其他學科和今后的學習打下基礎(chǔ)。

  2.教育教學目標:

  根據(jù)上述教材分析,考慮到學生已有的認知結(jié)構(gòu)心理特征,制定如下教學目標:

  知識與能力:

 。1)了解柱體、錐體、臺體的表面積.

 。2)能用公式求柱體、錐體、臺體的表面積。

 。3)培養(yǎng)學生空間想象能力和思維能力

  過程與方法:

  讓學生經(jīng)歷幾何體的表面積的實際求法,感知幾何體的形狀,培養(yǎng)學生對數(shù)學問題的轉(zhuǎn)化化歸能力。

  情感、態(tài)度與價值觀:

  通過學習,是學生感受到幾何體表面積的求解過程,激發(fā)學生探索、創(chuàng)新意識,增強學習積極性。

  3.重點,難點以及確定依據(jù):

  本著新課程標準,在吃透教材基礎(chǔ)上,我確立了如下的教學重點、難點

  教學重點:柱,錐,臺的表面積公式的推導

  教學難點:柱,錐,臺展開圖與空間幾何體的轉(zhuǎn)化

  二、教法分析

  1.教學手段:

  如何突出重點,突破難點,從而實現(xiàn)教學目標。在教學過程中擬計劃進行如下操作:教學方法;诒竟(jié)課的特點:應(yīng)著重采用合作探究、小組討論的教學方法。

  2.教學方法及其理論依據(jù):堅持“以學生為主體,以教師為主導”的原則,根據(jù)學生的心理發(fā)展規(guī)律,采用學生參與程度高的探究式討論教學法。在學生親自動手去給出各種幾何體的表面積的計算方法,特別注重不同解決問題的方法,提問不同層次的學生,面向全體,使基礎(chǔ)差的學生也能有表現(xiàn)機會,培養(yǎng)其自信心,激發(fā)其學習熱情。有效的開發(fā)各層次學生的潛在智能,力求使學生能在原有的基礎(chǔ)上得到發(fā)展。啟發(fā)學生從書本知識回到社會實踐。提供給學生與其生活和周圍世界密切相關(guān)的數(shù)學知識,學習基礎(chǔ)性的知識和技能,在教學中積極培養(yǎng)學生學習興趣和動機,明確的學習目的,老師應(yīng)在課堂上充分調(diào)動學生的學習積極性,激發(fā)來自學生主體的最有力的動力。

  三.學情分析

  我們常說:“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學習方法的人”,因而在教學中要特別重視學法的指導。

 。1)學生特點分析:中學生心理學研究指出,高中階段是(查同中學生心發(fā)展情況)抓住學生特點,積極采用形象生動,形式多樣的教學方法和學生廣泛的積極主動參與的學習方式,定能激發(fā)學生興趣,有效地培養(yǎng)學生能力,促進學生個性發(fā)展。生理上表少年好動,注意力易分散

 。2)動機和興趣上:明確的學習目的,老師應(yīng)在課堂上充分調(diào)動學生的學習積極性,激發(fā)來自學生主體的最有力的動力

  最后我來具體談?wù)勥@一堂課的教學過程:

  四、教學過程分析

 。1)由一段動畫視頻引入:豐富生動的吸引學生的注意力,調(diào)動學生學習積極性

  (2)由引入得出本課新的所要探討的問題——幾何體的表面積的計算。

 。3)探究問題。完全將主動權(quán)教給學生,讓學生主動去探究,得到解決問題的思路,鍛煉學生動手能力,解決實際問題能力。

  (4)總結(jié)結(jié)論,強化認識。知識性的內(nèi)容小結(jié),可把課堂教學傳授的知識盡快化為學生的素質(zhì),數(shù)學思想方法的小結(jié),可使學生更深刻地理解數(shù)學思想方法在解題中的地位和應(yīng)用,并且逐步培養(yǎng)學生良好的個性品質(zhì)目標。

  (5)例題及練習,見學案。

 。6)布置作業(yè)。

  針對學生素質(zhì)的差異進行分層訓練,既使學生掌握基礎(chǔ)知識,又使學有余力的學生有所提高,

 。7)小結(jié)。讓學生總結(jié)本節(jié)課的收獲。老師適時總結(jié)歸納。

高中數(shù)學說課稿 篇10

  一、地位作用

  數(shù)列是高中數(shù)學重要的內(nèi)容之一,等比數(shù)列是在學習了等差數(shù)列后新的一種特殊數(shù)列,在生活中如儲蓄、分期付款等應(yīng)用較為廣泛,在整個高中數(shù)學內(nèi)容中數(shù)列與已學過的函數(shù)及后面的數(shù)列極限有密切聯(lián)系,它也是培養(yǎng)學生數(shù)學能力的良好題材,它可以培養(yǎng)學生的觀察、分析、歸納、猜想及綜合解決問題的能力。

  基于此,設(shè)計本節(jié)的數(shù)學思路上:

  利用類比的思想,聯(lián)系等差數(shù)列的概念及通項公式的學習方法,采取自學、引導、歸納、猜想、類比總結(jié)的教學思路,充分發(fā)揮學生主觀能動性,調(diào)動學生的主體地位,充分體現(xiàn)教為主導、學為主體、練為主線的教學思想。

  二、教學目標

  知識目標:1)理解等比數(shù)列的概念

  2)掌握等比數(shù)列的通項公式

  3)并能用公式解決一些實際問題

  能力目標:培養(yǎng)學生觀察能力及發(fā)現(xiàn)意識,培養(yǎng)學生運用類比思想、解決分析問題的能力。

  三、教學重點

  1)等比數(shù)列概念的理解與掌握 關(guān)鍵:是讓學生理解“等比”的特點

  2)等比數(shù)列的通項公式的推導及應(yīng)用

  四、教學難點

  “等比”的理解及利用通項公式解決一些問題。

  五、教學過程設(shè)計

  (一)預習自學環(huán)節(jié)。(8分鐘)

  首先讓學生重新閱讀課本105頁國際象棋發(fā)明者的故事,并出示預習提綱,要求學生閱讀課本P122至P123例1上面。

  回答下列問題

  1)課本中前3個實例有什么特點?能否舉出其它例子,并給出等比數(shù)列的定義。

  2)觀察以下幾個數(shù)列,回答下面問題:

  1, , , ,……

 。1,-2,-4,-8……

  1,2,-4,8……

 。1,-1,-1,-1,……

  1,0,1,0……

 、儆心膸讉是等比數(shù)列?若是公比是什么?

 、诠萹為什么不能等于零?首項能為零嗎?

 、酃萹=1時是什么數(shù)列?

 、躴>0時數(shù)列遞增嗎?q<0時遞減嗎?

  3)怎樣推導等比數(shù)列通項公式?課本中采取了什么方法?還可以怎樣推導?

  4)等比數(shù)列通項公式與函數(shù)關(guān)系怎樣?

  (二)歸納主導與總結(jié)環(huán)節(jié)(15分鐘)

  這一環(huán)節(jié)主要是通過學生回答為主體,教師引導總結(jié)為主線解決本節(jié)兩個重點內(nèi)容。

  通過回答問題(1)(2)給出等比數(shù)列的定義并強調(diào)以下幾點:①定義關(guān)鍵字“第二項起”“常數(shù)”;

 、谝龑W生用數(shù)學語言表達定義: =q(n≥2);③q=1時為非零常數(shù)數(shù)列,既是等差數(shù)列又是等比數(shù)列。引申:若數(shù)列公比為字母,分q=1和q≠1兩種情況;引入分類討論的思想。

  ④q>0時等比數(shù)列單調(diào)性不定,q<0為擺動數(shù)列,類比等差數(shù)列d>0為遞增數(shù)列,d<0為遞減數(shù)列。

  通過回答問題(3)回憶等差數(shù)列的推導方法,比較兩個數(shù)列定義的不同,引導推出等比數(shù)列通項公式。

  法一:歸納法,學會從特殊到一般的方法,并從次數(shù)中發(fā)現(xiàn)規(guī)律,培養(yǎng)觀察力。

  法二:迭乘法,聯(lián)系等差數(shù)列“迭加法”,培養(yǎng)學生類比能力及新舊知識轉(zhuǎn)化能力。

【精選高中數(shù)學說課稿范文集合十篇】相關(guān)文章:

高中數(shù)學說課稿范文集合十篇08-16

精選高中數(shù)學說課稿模板集合十篇08-16

精選高中數(shù)學說課稿范文錦集十篇08-18

精選高中數(shù)學說課稿范文匯總十篇08-15

有關(guān)高中數(shù)學說課稿范文集合十篇08-19

關(guān)于高中數(shù)學說課稿范文集合十篇08-17

精選高中數(shù)學說課稿范文集合5篇08-14

精選高中數(shù)學說課稿范文集合8篇08-09

精選高中數(shù)學說課稿模板十篇07-23