高中數學說課稿(精選20篇)
作為一名優(yōu)秀的教育工作者,通常需要用到說課稿來輔助教學,說課稿有助于提高教師理論素養(yǎng)和駕馭教材的能力。那么什么樣的說課稿才是好的呢?以下是小編為大家整理的高中數學說課稿,僅供參考,大家一起來看看吧。
高中數學說課稿 1
一、教材分析
1.教材所處的地位和作用:
本節(jié)內容在全書和章節(jié)中的作用是:《1.3.1柱體、錐體、臺體的表面積》是高中數學教材數學2第一章空間幾何體3節(jié)內容。在此之前學生已學習了空間幾何體的結構、三視圖和直觀圖為基礎,這為過渡到本節(jié)的學習起著鋪墊作用。本節(jié)內容是在空間幾何中,占據重要的地位。以及為其他學科和今后的學習打下基礎。
2.教育教學目標:
根據上述教材分析,考慮到學生已有的認知結構心理特征,制定如下教學目標:
知識與能力:
。1)了解柱體、錐體、臺體的表面積。
。2)能用公式求柱體、錐體、臺體的表面積。
。3)培養(yǎng)學生空間想象能力和思維能力。
過程與方法:
讓學生經歷幾何體的表面積的實際求法,感知幾何體的形狀,培養(yǎng)學生對數學問題的轉化化歸能力。
情感、態(tài)度與價值觀:
通過學習,是學生感受到幾何體表面積的求解過程,激發(fā)學生探索、創(chuàng)新意識,增強學習積極性。
3.重點,難點以及確定依據:
本著新課程標準,在吃透教材基礎上,我確立了如下的教學重點、難點。
教學重點:柱,錐,臺的表面積公式的推導。
教學難點:柱,錐,臺展開圖與空間幾何體的轉化。
二、教法分析
1.教學手段:
如何突出重點,突破難點,從而實現教學目標。在教學過程中擬計劃進行如下操作:教學方法;诒竟(jié)課的特點:應著重采用合作探究、小組討論的教學方法。
2.教學方法及其理論依據:堅持“以學生為主體,以教師為主導”的原則,根據學生的心理發(fā)展規(guī)律,采用學生參與程度高的探究式討論教學法。在學生親自動手去給出各種幾何體的表面積的.計算方法,特別注重不同解決問題的方法,提問不同層次的學生,面向全體,使基礎差的學生也能有表現機會,培養(yǎng)其自信心,激發(fā)其學習熱情。有效的開發(fā)各層次學生的潛在智能,力求使學生能在原有的基礎上得到發(fā)展。啟發(fā)學生從書本知識回到社會實踐。提供給學生與其生活和周圍世界密切相關的數學知識,學習基礎性的知識和技能,在教學中積極培養(yǎng)學生學習興趣和動機,明確的學習目的,老師應在課堂上充分調動學生的學習積極性,激發(fā)來自學生主體的最有力的動力。
三、學情分析
我們常說:“現代的文盲不是不識字的人,而是沒有掌握學習方法的人”,因而在教學中要特別重視學法的指導。
。1)學生特點分析:中學生心理學研究指出,高中階段是(查同中學生心發(fā)展情況)抓住學生特點,積極采用形象生動,形式多樣的教學方法和學生廣泛的積極主動參與的學習方式,定能激發(fā)學生興趣,有效地培養(yǎng)學生能力,促進學生個性發(fā)展。生理上表少年好動,注意力易分散。
。2)動機和興趣上:明確的學習目的,老師應在課堂上充分調動學生的學習積極性,激發(fā)來自學生主體的最有力的動力。
最后我來具體談談這一堂課的教學過程:
四、教學過程分析
(1)由一段動畫視頻引入:豐富生動的吸引學生的注意力,調動學生學習積極性。
(2)由引入得出本課新的所要探討的問題——幾何體的表面積的計算。
。3)探究問題。完全將主動權教給學生,讓學生主動去探究,得到解決問題的思路,鍛煉學生動手能力,解決實際問題能力。
。4)總結結論,強化認識。知識性的內容小結,可把課堂教學傳授的知識盡快化為學生的素質,數學思想方法的小結,可使學生更深刻地理解數學思想方法在解題中的地位和應用,并且逐步培養(yǎng)學生良好的個性品質目標。
。5)例題及練習,見學案。
。6)布置作業(yè)。
針對學生素質的差異進行分層訓練,既使學生掌握基礎知識,又使學有余力的學生有所提高。
(7)小結:讓學生總結本節(jié)課的收獲。老師適時總結歸納。
高中數學說課稿 2
一、背景分析
1、學習任務分析:充要條件是中學數學中最重要的數學概念之一,它主要討論了命題的條件與結論之間的邏輯關系,目的是為今后的數學學習特別是數學推理的學習打下基礎。
教學重點:充分條件、必要條件和充要條件三個概念的定義。
2、學生情況分析:從學生學習的角度看,與舊教材相比,教學時間的前置,造成學生在學習充要條件這一概念時的知識儲備不夠豐富,邏輯思維能力的訓練不夠充分,這也為教師的教學帶來一定的困難,因此,新教材在第一章的小結與復習中,把學生的學習要求規(guī)定為“初步掌握充要條件”(注意:新教學大綱的教學目標是“掌握充要條件的意義”),這是比較切合教學實際的。由此可見,教師在充要條件這一內容的新授教學時,不可拔高要求追求一步到位,而要在今后的教學中滾動式逐步深化,使之與學生的知識結構同步發(fā)展完善。
教學難點:“充要條件”這一節(jié)介紹了充分條件,必要條件和充要條件三個概念,由于這些概念比較抽象,中學生不易理解,用它們去解決具體問題則更為困難,因此”充要條件”的教學成為中學數學的難點之一,而必要條件的定義又是本節(jié)內容的難點。根據多年教學實踐,學生對”充分條件”的概念較易接受,而必要條件的概念都難以理解。對于“B=A”,稱A是B的必要條件難于接受,A本是B推出的結論,怎么又變成條件了呢?對這學生難于理解。
教學關鍵:找出A、B,根據定義判斷A=B與B=A是否成立。教學中,要強調先找出A、B,否則,學生可能會對必要條件難以理解。
二、教學目標設計:
(一)知識目標:
1、正確理解充分條件、必要條件、充要條件三個概念。
2、能利用充分條件、必要條件、充要條件三個概念,熟練判斷四種命題間的關系。
。ǘ┠芰δ繕耍
1、培養(yǎng)學生的觀察與類比能力:“會觀察”,通過大量的問題,會觀察其共性及個性。
2、培養(yǎng)學生的歸納能力:“敢歸納”,敢于對一些事例,觀察后進行歸納,總結出一般規(guī)律。
。ㄈ┣楦心繕耍
1、通過以學生為主體的教學方法,讓學生自己構造數學命題,發(fā)展體驗獲取知識的感受。
2、通過對命題的四種形式及充分條件,必要條件的相對性,培養(yǎng)同學們的辯證唯物主義觀點。
3、通過“會觀察”,“敢歸納”,“善建構”,培養(yǎng)學生自主學習,勇于創(chuàng)新,多方位審視問題的創(chuàng)造技巧,敢于把錯誤的思維過程及弱點暴露出來,并在問題面前表現出濃厚的興趣和不畏困難、勇于積極的精神。
三、教學結構設計:
數學知識來源于生活實際,生活本身又是一個巨大的數學課堂,我在教學過程中注重把教材內容與生活實踐結合起來,加強數學教學的實踐性,給數學找到生活的原型。我對本節(jié)課的數學知識結構進行創(chuàng)造性地“教學加工”,在教學方法上采用了“合作——探索”的開放式教學模式,使課堂教學體現“參與式”、“生活化”、“探索性”,保證學生對數學知識的主動獲取,促進學生充分、和諧、自主、個性化的發(fā)展。
整體思路為:教師創(chuàng)設情境,激發(fā)興趣,引出課題,引導學生分析實例,給出定義,例題分析(采用開放式教學)知識小結,擴展例題,練習反饋。
整個教學設計的主要特色:
。1)由生活事例引出課題;
(2)采用開放式教學模式;
。3)擴展例題是分析生活中的名言名句,又將數學融入生活中。
努力做到:“教為不教,學為會學”;要“授之以魚”更要“授之以漁”。
四、教學媒體設計:
本節(jié)課是概念課,要避免單一的下定義作練習模式,應該努力使課堂元素更為豐富。這節(jié)課,我借助了多媒體課件,配合教學,添加了一些與例題相匹配的圖片背景,以激發(fā)學生的學習興趣,另外將學生的自編題利用多媒體課件展示出來分析,提高了課堂教學的效率。
五、教學過程設計:
第一,創(chuàng)設情境,激發(fā)興趣,引出課題:
考慮到高一學生學習這一章的知識儲備不足,我利用日常生活中的具體事例來提出本課的問題,并與學生共同利用原有的知識分析,事例中包括幾個問題,為后面定義的分析埋下伏筆。
我用的第一個事例是:“做一件襯衫,需用布料,到布店去買,問營業(yè)員應該買多少?他說買3米足夠了。”這樣,就產生了“3米布料”與“做一件襯衫夠不夠”的關系。用這個事件目的是為了第二部分引導學生得出充分條件的.定義。這里要強調該事件包括:
A:有3米布料;
B:做一件襯衫夠了。
第二個事例是:“一人病重,呼吸困難,急診住院接氧氣。”就產生了“氧氣”與“活命與否”的關系。用這個事件的目的是為了第二部分引導學生得出必要條件的定義。這里要強調該事件包括:
A:接氧氣;
B:活了。
用以上兩個生活中的事例來說明數學中應研究的概念、關系,會使學生感到親切自然,有助于提高興趣和深入領會概念的內容,特別是它的必要性。
第二,引導學生分析實例,給出定義。
在第一部分激發(fā)起學生的學習興趣后,緊接著開展第二部分,引導學生分析實例,讓學生從事例中抽象出數學概念,得出本節(jié)課所要學習的充分條件和必要條件的定義。在引導過程中盡量放慢語速,結合事例幫助學生分析。
得出定義之后,這里有必要再利用本課前面兩節(jié)的“邏輯聯結詞”和“四種命題”的知識來加強對必要條件定義的理解。(用前面的例子來說即:“活了,則說明在輸氧”)可記作:
還應指出的是“必要條件”的定義,有如繞口令,要一次廓清,不可拖泥帶水。這里,只要一下子“定義”清楚了,下邊再解釋“,A是B的必要條件”是怎么回事。這樣處理,學生更容易接受“必要”二字。(因無A則無B,故欲有B,A是必要的)。
當兩個定義分別給出后,我又對它們之間的區(qū)別加以分析說明,(充分條件可能會有多余,浪費,必要條件可能還不足(以使事件B成立))從而順理成章地引出充要條件的定義(既是必要條件,又是充分條件,就稱為充分必要條件,簡稱充要條件,記作:。(不多不少,恰到好處)。使學生在此先對兩個充分條件和必要條件兩個概念的不同有了第一次的認識,第三部分再利用具體的數學事例來強化。
高中數學說課稿 3
一、教材地位與作用
本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內容,與初中學習的三角形的邊和角的基本關系有密切的聯系與判定三角形的全等也有密切聯系,在日常生活和工業(yè)生產中也時常有解三角形的問題,而且解三角形和三角函數聯系在高考當中也時常考一些解答題。因此,正弦定理的知識非常重要。
二、學情分析
作為高一學生,同學們已經掌握了基本的三角函數,特別是在一些特殊三角形中,而學生們在解決任意三角形的邊與角問題,就比較困難。
教學重點:正弦定理的內容,正弦定理的證明及基本應用。
教學難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數。
根據我的教學內容與學情分析以及教學重難點,我制定了如下幾點教學目標:
教學目標分析:
知識目標:理解并掌握正弦定理的證明,運用正弦定理解三角形。
能力目標:探索正弦定理的證明過程,用歸納法得出結論。
情感目標:通過推導得出正弦定理,讓學生感受數學公式的整潔對稱美和數學的實際應用價值。
三、教法學法分析
教法:采用探究式課堂教學模式,在教師的.啟發(fā)引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發(fā)現”為基本探究內容,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。
學法:指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,動手嘗試相結合,增強學生由特殊到一般的數學思維能力,鍥而不舍的求學精神。
四、教學過程
(一)創(chuàng)設情境,布疑激趣
“興趣是最好的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學生幫助別人的熱情和學習的興趣,從而進入今天的學習課題。
(二)探尋特例,提出猜想
1.激發(fā)學生思維,從自身熟悉的特例(直角三角形)入手進行研究,發(fā)現正弦定理。
2.那結論對任意三角形都適用嗎?指導學生分小組用刻度尺、量角器、計算器等工具對一般三角形進行驗證。
3.讓學生總結實驗結果,得出猜想:
在三角形中,角與所對的邊滿足關系。
這為下一步證明樹立信心,不斷的使學生對結論的認識從感性逐步上升到理性。
(三)邏輯推理,證明猜想
1.強調將猜想轉化為定理,需要嚴格的理論證明。
2.鼓勵學生通過作高轉化為熟悉的直角三角形進行證明。
3.提示學生思考哪些知識能把長度和三角函數聯系起來,繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學思想。
4.思考是否還有其他的方法來證明正弦定理,布置課后練習,提示,做三角形的外接圓構造直角三角形,或用坐標法來證明。
(四)歸納總結,簡單應用
1.讓學生用文字敘述正弦定理,引導學生發(fā)現定理具有對稱和諧美,提升對數學美的享受。
2.正弦定理的內容,討論可以解決哪幾類有關三角形的問題。
3.運用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發(fā)學生知識后用于實際的價值觀。
(五)講解例題,鞏固定理
1.例1:在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。
例1簡單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。
2.例2:在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。
例2較難,使學生明確,利用正弦定理求角有兩種可能。要求學生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學生。
(六)課堂練習,提高鞏固
1.在△ABC中,已知下列條件,解三角形。
(1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm
2.在△ABC中,已知下列條件,解三角形。
(1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°
學生板演,老師巡視,及時發(fā)現問題,并解答。
(七)小結反思,提高認識
通過以上的研究過程,同學們主要學到了那些知識和方法?你對此有何體會?
1.用向量證明了正弦定理,體現了數形結合的數學思想。
2.它表述了三角形的邊與對角的正弦值的關系。
3.定理證明分別從直角、銳角、鈍角出發(fā),運用分類討論的思想。
(從實際問題出發(fā),通過猜想、實驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結論,而且整個探索過程我們也掌握了研究問題的一般方法。在強調研究性學習方法,注重學生的主體地位,調動學生積極性,使數學教學成為數學活動的教學。)
(八)任務后延,自主探究
如果已知一個三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現正弦定理不適用了,那么自然過渡到下一節(jié)內容,余弦定理。布置作業(yè),預習下一節(jié)內容。
高中數學說課稿 4
大家好!我叫xxx,來自xx。我說課的題目是《變量之間的相關關系》,內容選自于高中教材新課程人教A版必修3第二章第三節(jié),課時安排為三個課時,本節(jié)課內容為第一課時。下面我將從教材分析、教學目標分析、教學方法與手段分析、教學過程分析四大方面來闡述我對這節(jié)課的分析和設計:
一、教材分析
1、教材所處的地位和作用:
本章我們所要學習的主要內容就是統計,在前面的章節(jié)中我們已經對統計的相關知識作了大致的了解。本節(jié)課我們要繼續(xù)探討的是變量之間的相關關系,它為接下來要學習的兩個變量的線性相關打下基礎。這是一個與現實實際生活聯系很緊密的知識,在教師的引導下,可使學生認識到在現實世界中存在不能用函數模型描述的變量關系,從而體會研究變量之間的相關關系的重要性。
2、教學的重點和難點:
重點:
①通過收集現實問題中兩個有關聯變量的數據直觀認識變量間的相關關系;
、诶蒙Ⅻc圖直觀認識兩個變量之間的線性關系。
難點:
、僮兞恐g相關關系的理解;
、谧魃Ⅻc圖和理解兩個變量的正相關和負相關。
二、教學目標分析
1、知識與技能目標:
通過收集現實問題中兩個有關聯變量的數據認識變量間的相關關系。
2、過程與方法目標:
明確事物間的相互聯系。認識現實生活中變量間除了存在確定的關系外,仍存在大量的非確定性的相關關系,并利用散點圖直觀體會這種相關關系。
3、情感態(tài)度與價值觀目標:
通過對事物之間相關關系的了解,讓學生們認識到現實中任何事物都是相互聯系的辯證法思想。
三、教學方法與手段分析
1、教學方法:結合本節(jié)課的教學內容和學生的認知水平,在教法上,我采用“問答探究”式的教學方法,層層深入。充分發(fā)揮教師的主導作用,讓學生真正成為教學活動的主體。
2、教學手段:通過多媒體輔助教學,充分調動學生參與課堂教學的主動性與積極性。
四、教學過程分析
、鍐栴}引出:
請同學們如實填寫下表(在空格中打“√”)
然后回答如下問題:
①“你的數學成績對你的物理成績有無影響?”
②“如果你的數學成績好,那么你的物理成績也不會太差,如果你的數學成績差,那么你的物理成績也不會太好。”對你來說,是這樣嗎?同意這種說法的同學請舉手。
根據同學們回答的結果,讓學生討論:我們可以發(fā)現自己的數學成績和物理成績存在某種關系。(似乎就是數學好的,物理也好;數學差的,物理也差,但又不全對。)教師總結如下:
物理成績和數學成績是兩個變量,從經驗看,由于物理學習要用到比較多的數學知識和數學方法。數學成績的高低對物理成績的高低是有一定影響的。但決非唯一因素,還有其它因素,如圖所示(幻燈片給出):
因此,不能通過一個人的數學成績是多少就準確地斷定他的物理成績能達到多少。但這兩個變量是有一定關系的,它們之間是一種不確定性的關系。如何通過數學成績的結果對物理成績進行合理估計有非常重要的現實意義。
「設計意圖」通過對身邊事例的分析,引出我們今天將要學習的主要內容,由此可以激起學生們的學習興趣,為接下來的學習打下良好的基礎。
、嫣骄啃轮
1、概念形成
教師提問:“像剛才這種情況在現實生活中是否還有?”學生們思考之后,請幾位同學就提出的問題作出回答。老師就舉出的例子,引導學生作出分析,然后由老師總結得出相關關系的概念。[兩個變量之間的關系可能是確定的關系(如:函數關系),或非確定性關系。當自變量取值一定時,因變量也確定,則為確定關系;當自變量取值一定時,因變量帶有隨機性,這種變量之間的關系稱為相關關系。相關關系是一種非確定性關系。]
「設計意圖」從現實生活入手,抓住學生們的注意力,引導學生分析得出概念,讓學生真正參與到概念的形成過程中來。
2、探究線性相關關系和其他相關關系
「課件展示」
例1在一次對人體脂肪和年齡關系的研究中,研究人員獲得了一組樣本數據:
問題:針對于上述數據所提供的信息,你認為人體的脂肪含量與年齡之間有怎樣的關系?
[教師特別向學生強調在研究兩個變量之間是否存在某種關系時,必須從散點圖入手(向學生介紹什么是散點圖)。并且引導學生從散點圖上可以得出如下規(guī)律:(幻燈片給出)
、偃绻械臉颖军c都落在某一函數曲線上,那么變量之間具有函數關系(確定性關系);
、谌绻械臉颖军c都落在某一函數曲線的附近,那么變量之間具有相關關系(不確定性關系);
、廴绻械臉颖军c都落在某一直線附近,那么變量之間具有線性相關關系(不確定性關系)。
「設計意圖」通過對這個典型事例的分析,向學生們介紹什么是散點圖,并總結出如何從散點圖上判斷變量之間關系的規(guī)律。
下面我們用TI圖形計算器作出這兩個變量的'散點圖。
學生實驗:先把數據中成對出現的兩個數分別作為橫坐標、縱坐標,把數據輸入到表格當中(第一列橫坐標、第二列縱坐標);然后,用TI圖形計算器作散點圖:
[引導學生觀察作出的散點圖,體會現實生活中兩個變量之間的關系存在著不確定性。散點圖中的散點并不在一條直線上,只是分布在一條直線的周圍,即為線性相關關系。]
「設計意圖」通過實驗讓學生們感受散點圖的主要形成過程,并由此引出線性相關關系。為后面回歸直線和回歸直線方程的學習做好鋪墊。
「課件展示」四組數據,請學生作出散點圖,并觀察每組數據的特點。
根據四組數據,學生作出四個散點圖。
通過學生討論、交流、用TI圖形計算器展示、對比自己作出的散點圖,我們引出線性相關關系,正負相關關系的概念。
「設計意圖」及時鞏固知識,學生通過親自動手作散點圖,并交流討論,進一步加深對散點圖的理解,并由此引出正負相關關系的概念,突破難點。
、缋}講解,深化認識
「課件展示」
例2一般說來,一個人的身高越高,他的人就越大,相應地,他的右手一拃長就越長,因此,人的身高與右手一拃長之間存在著一定的關系。為了對這個問題進行調查,我們收集了北京市某中學20xx年高三年級96名學生的身高與右手一拃長的數據如下表。
。1)根據上表中的數據,制成散點圖。你能從散點圖中發(fā)現身高與右手一拃長之間的近似關系嗎?
。2)如果近似成線性關系,請畫出一條直線來近似地表示這種線性關系。
(3)如果一個學生的身高是188cm,你能估計他的一拃大概有多長嗎?
「設計意圖」這個例子很容易激起學生們的學習興趣,由此可達到更好的教學效果。通過對這道題的解答,使對前面知識的認識更加牢固。
㈣反思小結、培養(yǎng)能力
⑴變量間相關關系、線性關系和正負相關關系
⑵如何做散點圖
「設計意圖」小節(jié)是一堂課的概括和總結,有利于優(yōu)化學生的認知結構,把課堂教學傳授的知識較快轉化為學生的素質,也更進一步培養(yǎng)學生的歸納概括能力
、檎n后作業(yè),自主學習
習題2.31、2
[設計意圖]課后作業(yè)的布置是為了檢驗學生對本節(jié)課內容的理解和運用程度,并促使學生進一步鞏固和掌握所學內容。
高中數學說課稿 5
一、教材分析
1、教材的地位和作用
。1)本節(jié)課主要對函數單調性的學習;
(2)它是在學習函數概念的基礎上進行學習的,同時又為基本初等函數的學習奠定了基礎,所以他在教材中起著承前啟后的重要作用;(可以看看這一課題的前后章節(jié)來寫)
(3)它是歷年高考的熱點、難點問題
。ǜ鶕唧w的課題改變就行了,如果不是熱點難點問題就刪掉)
2、教材重、難點
重點:函數單調性的定義
難點:函數單調性的證明
重難點突破:在學生已有知識的基礎上,通過認真觀察思考,并通過小組合作探究的辦法來實現重難點突破。(這個必須要有)
二、教學目標
知識目標:
(1)函數單調性的定義
。2)函數單調性的證明
能力目標:培養(yǎng)學生全面分析、抽象和概括的能力,以及了解由簡單到復雜,由特殊到一般的化歸思想。
情感目標:培養(yǎng)學生勇于探索的精神和善于合作的意識。
(這樣的教學目標設計更注重教學過程和情感體驗,立足教學目標多元化)
三、教法學法分析
1、教法分析
“教必有法而教無定法”,只有方法得當才會有效。新課程標準之處教師是教學的組織者、引導者、合作者,在教學過程要充分調動學生的積極性、主動性。本著這一原則,在教學過程中我主要采用以下教學方法:開放式探究法、啟發(fā)式引導法、小組合作討論法、反饋式評價法
2、學法分析
“授人以魚,不如授人以漁”,最有價值的知識是關于方法的只是。學生作為教學活動的主題,在學習過程中的參與狀態(tài)和參與度是影響教學效果最重要的因素。在學法選擇上,我主要采用:自主探究法、觀察發(fā)現法、合作交流法、歸納總結法。
。ㄇ叭糠钟脮r控制在三分鐘以內,可適當刪減)
四、教學過程
1、以舊引新,導入新知
通過課前小研究讓學生自行繪制出一次函數f(x)=x和二次函數f(x)=x^2的圖像,并觀察函數圖象的特點,總結歸納。通過課上小組討論歸納,引導學生發(fā)現,教師總結:一次函數f(x)=x的圖像在定義域是直線上升的,而二次函數f(x)=x^2的圖像是一個曲線,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當添加手勢,這樣看起來更自然)
2、創(chuàng)設問題,探索新知
緊接著提出問題,你能用二次函數f(x)=x^2表達式來描述函數在(-∞,0)的圖像?教師總結,并板書,揭示函數單調性的定義,并注意強調可以利用作差法來判斷這個函數的單調性。
讓學生模仿剛才的表述法來描述二次函數f(x)=x^2在(0,+∞)的圖像,并找個別同學起來作答,規(guī)范學生的'數學用語。
讓學生自主學習函數單調區(qū)間的定義,為接下來例題學習打好基礎。
3、例題講解,學以致用
例1主要是對函數單調區(qū)間的鞏固運用,通過觀察函數定義在(—5,5)的圖像來找出函數的單調區(qū)間。這一例題主要以學生個別回答為主,學生回答之后通過互評來糾正答案,檢查學生對函數單調區(qū)間的掌握。強調單調區(qū)間一般寫成半開半閉的形式
例題講解之后可讓學生自行完成課后練習4,以學生集體回答的方式檢驗學生的學習效果。
例2是將函數單調性運用到其他領域,通過函數單調性來證明物理學的波意爾定理。這是歷年高考的熱點跟難點問題,這一例題要采用教師板演的方式,來對例題進行證明,以規(guī)范總結證明步驟。一設二差三化簡四比較,注意要把f(x1)-f(x2)化簡成和差積商的形式,再比較與0的大小。
學生在熟悉證明步驟之后,做課后練習3,并以小組為單位找部分同學上臺板演,其他同學在下面自行完成,并通過自評、互評檢查證明步驟。
4、歸納小結
本節(jié)課我們主要學習了函數單調性的定義及證明過程,并在教學過程中注重培養(yǎng)學生勇于探索的精神和善于合作的意識。
5、作業(yè)布置
為了讓學生學習不同的數學,我將采用分層布置作業(yè)的方式:一組習題1.3A組1、2、3,二組習題1.3A組2、3、B組1、2
6、板書設計
我力求簡潔明了地概括本節(jié)課的學習要點,讓學生一目了然。
。ㄟ@部分最重要用時六到七分鐘,其中定義講解跟例題講解一定要說明學生的活動)
五、教學評價
本節(jié)課是在學生已有知識的基礎上學習的,在教學過程中通過自主探究、合作交流,充分調動學生的積極性跟主動性,及時吸收反饋信息,并通過學生的自評、互評,讓內部動機和外界刺激協調作用,促進其數學素養(yǎng)不斷提高。
高中數學說課稿 6
一、教材分析
1、教材所處的地位和作用
奇偶性是人教A版第一章集合與函數概念的第3節(jié)函數的基本性質的第2小節(jié)。
奇偶性是函數的一條重要性質,教材從學生熟悉的及入手,從特殊到一般,從具體到抽象,注重信息技術的應用,比較系統地介紹了函數的奇偶性。從知識結構看,它既是函數概念的拓展和深化,又是后續(xù)研究指數函數、對數函數、冪函數、三角函數的基礎。所以,本節(jié)課起著承上啟下的重要作用。
2、學情分析
從學生的認知基礎看,學生在初中已經學習了軸對稱圖形和中心對稱圖形,并且有了必須數量的簡單函數的儲備。同時,剛剛學習了函數單調性,已經積累了研究函數的基本方法與初步經驗。
從學生的思維發(fā)展看,高一學生思維能力正在由形象經驗型向抽象理論型轉變,能夠用假設、推理來思考和解決問題、
3、教學目標
基于以上對教材和學生的分析,以及新課標理念,我設計了這樣的教學目標:
【知識與技能】
1)能確定一些簡單函數的奇偶性。
2)能運用函數奇偶性的代數特征和幾何意義解決一些簡單的問題。
【過程與方法】
經歷奇偶性概念的構成過程,提高觀察抽象能力以及從特殊到一般的歸納概括能力。
【情感、態(tài)度與價值觀】
經過自主探索,體會數形結合的思想,感受數學的對稱美。
從課堂反應看,基本上到達了預期效果。
4、教學重點和難點
重點:函數奇偶性的概念和幾何意義。
幾年的教學實踐證明,雖然函數奇偶性這一節(jié)知識點并不是很難理解,但知識點掌握不全面的學生容易出現下面的錯誤。他們往往流于表面形式,只根據奇偶性的定義檢驗成立即可,而忽視了研究函數定義域的問題。所以,在介紹奇、偶函數的定義時,必須要揭示定義的隱含條件,從正反兩方面講清定義的內涵和外延。所以,我把函數的奇偶性概念設計為本節(jié)課的重點。在這個問題上我除了注意概念的講解,還特意安排了一道例題,來加強本節(jié)課重點問題的講解。
難點:奇偶性概念的數學化提煉過程。
由于,學生看待問題還是靜止的、片面的,抽象概括能力比較薄弱,這對建構奇偶性的概念造成了必須的'困難。所以我把奇偶性概念的數學化提煉過程設計為本節(jié)課的難點。
二、教法與學法分析
1、教法
根據本節(jié)教材資料和編排特點,為了更有效地突出重點,突破難點,按照學生的認知規(guī)律,遵循教師為主導,學生為主體,訓練為主線的指導思想,采用以引導發(fā)現法為主,直觀演示法、類比法為輔。教學中,精心設計一個又一個帶有啟發(fā)性和思考性的問題,創(chuàng)設問題情景,誘導學生思考,使學生始終處于主動探索問題的積極狀態(tài),從而培養(yǎng)思維能力。從課堂反應看,基本上到達了預期效果。
2、學法
讓學生在觀察一歸納一檢驗一應用的學習過程中,自主參與知識的發(fā)生、發(fā)展、構成的過程,從而使學生掌握知識。
三、教學過程
具體的教學過程是師生互動交流的過程,共分六個環(huán)節(jié):設疑導入、觀圖激趣;指導觀察、構成概念;學生探索、領會定義;知識應用,鞏固提高;總結反饋;分層作業(yè),學以致用。下頭我對這六個環(huán)節(jié)進行說明。
。ㄒ唬┰O疑導入、觀圖激趣
由于本節(jié)資料相對獨立,專題性較強,所以我采用了開門見山導入方式,直接點明要學的資料,使學生的思維迅速定向,到達開始就明確目標突出重點的效果。
用多媒體展示一組圖片,使學生感受到生活中的對稱美。再讓學生觀察幾個特殊函數圖象。經過讓學生觀察圖片導入新課,既激發(fā)了學生濃厚的學習興趣,又為學習新知識作好鋪墊。
。ǘ┲笇в^察、構成概念
在這一環(huán)節(jié)中共設計了2個探究活動。
探究1、2數學中對稱的形式也很多,這節(jié)課我們就以函數和=︱x︱以及和為例展開探究。這個探究主要是經過學生的自主探究來實現的,由于有圖片的鋪墊,絕大多數學生很快就說出函數圖象關于Y軸(原點)對稱。之后學生填表,從數值角度研究圖象的這種特征,體此刻自變量與函數值之間有何規(guī)律引導學生先把它們具體化,再用數學符號表示。借助課件演示(令比較得出等式,再令,得到)讓學生發(fā)現兩個函數的對稱性反應到函數值上具有的特性,然后經過解析式給出嚴格證明,進一步說明這個特性對定義域內任意一個都成立。最終給出偶函數(奇函數)定義(板書)。
在這個過程中,學生把對圖形規(guī)律的感性認識,轉化成數量的規(guī)律性,從而上升到了理性認識,切實經歷了一次從特殊歸納出一般的過程體驗。
(三)學生探索、領會定義
探究3下列函數圖象具有奇偶性嗎?
設計意圖:深化對奇偶性概念的理解。強調:函數具有奇偶性的前提條件是--定義域關于原點對稱。(突破了本節(jié)課的難點)
(四)知識應用,鞏固提高
在這一環(huán)節(jié)我設計了4道題
例1確定下列函數的奇偶性
選例1的第(1)及(3)小題板書來示范解題步驟,其他小題讓學生在下頭完成。
例1設計意圖是歸納出確定奇偶性的步驟:
(1)先求定義域,看是否關于原點對稱;
(2)再確定f(-x)=-f(x)還是f(-x)=f(x)。
例2確定下列函數的奇偶性:
例3確定下列函數的奇偶性:
例2、3設計意圖是探究一個函數奇偶性的可能情景有幾種類型?
例4
(1)確定函數的奇偶性。
。2)如圖給出函數圖象的一部分,你能根據函數的奇偶性畫出它在y軸左邊的圖象嗎?
例4設計意圖加強函數奇偶性的幾何意義的應用。
在這個過程中,我重點關注了學生的推理過程的表述。經過這些問題的解決,學生對函數的奇偶性認識、理解和應用都能提升很大一個高度,到達當堂消化吸收的效果。
。ㄎ澹┛偨Y反饋
在以上課堂實錄中充分展示了教法、學法中的互動模式,問題貫穿于探究過程的始終,切實體現了啟發(fā)式、問題式教學法的特色。
在本節(jié)課的最終對知識點進行了簡單回顧,并引導學生總結出本節(jié)課應積累的解題經驗。知識在于積累,而學習數學更在于知識的應用經驗的積累。所以提高知識的應用能力、增強錯誤的預見能力是提高數學綜合能力的很重要的策略。
(六)分層作業(yè),學以致用
必做題:課本第36頁練習第1-2題。
選做題:課本第39頁習題1、3A組第6題。
思考題:課本第39頁習題1、3B組第3題。
設計意圖:面向全體學生,注重個人差異,加強作業(yè)的針對性,對學生進行分層作業(yè),既使學生掌握基礎知識,又使學有余力的學生有所提高,進一步到達不一樣的人在數學上得到不一樣的發(fā)展。
高中數學說課稿 7
一、本節(jié)資料的地位與重要性
"分類計數原理與分步計數原理"是《高中數學》一節(jié)獨特資料。這一節(jié)課與排列、組合的基本概念有著緊密的聯系,經過對這一節(jié)課的學習,既能夠讓學生理解、理解分類計數原理與分步計數原理,還為日后排列、組合和二項式定理的教學做好準備,起到奠基的重要作用。
二、關于教學目標的確定
根據兩個基本原理的地位和作用,我認為本節(jié)課的教學目標是:
。1)使學生正確理解兩個基本原理的概念;
。2)使學生能夠正確運用兩個基本原理分析、解決一些簡單問題;
。3)提高分析、解決問題的能力;
。4)使學生樹立"由個別到一般,由一般到個別"的認識事物的辯證唯物主義哲學思想觀點。
三、關于教學重點、難點的選擇和處理
中學數學課程中引進的關于排列、組合的計算公式都是以兩個計數原理為基礎的,而一些較復雜的排列、組合應用題的求解,更是離不開兩個基本原理,所以正確理解兩個基本原理并能解決實際問題是學習本章的重點資料。
正確使用兩個基本原理的前提是要學生清楚兩個基本原理使用的條件。而原理中提到的分步和分類,學生不是一下子就能理解深刻的,應對復雜的事物和現象學生對分類和分步的選擇容易產生錯誤的認識,所以分類計數原理和分步計數原理的準確應用是本節(jié)課的教學難點。必需使學生認清兩個基本原理的實質就是完成一件事需要分類還是分步,才能使學生理解概念并對如何運用這兩個基本原理有正確清楚的認識。教學中兩個基本問題的引用及引伸,就是為突破難點做準備。
四、關于教學方法和教學手段的選用
根據本節(jié)課的資料及學生的實際水平,我采取啟發(fā)引導式教學方法并充分發(fā)揮電腦多媒體的輔助教學作用。
啟發(fā)引導式作為一種啟發(fā)式教學方法,體現了認知心理學的基本理論。貼合教學論中的自覺性和積極性、鞏固性、可理解性、教學與發(fā)展相結合、教師的主導作用與學生的主體地位相統一等原則,教學過程中,教師采用點撥的方法,啟發(fā)學生經過主動思考、動手操作來到達對知識的"發(fā)現"和理解,進而完成知識的內化,使書本的知識成為自我的知識。
電腦多媒體以聲音、動畫、影像等多種形式強化對學生感觀的刺激,這一點是粉筆和黑板所不能比擬的,采取這種形式,能夠極大提高學生的學習興趣,加大一堂課的信息容量,使教學目標更完美地體現。另外,電腦軟件具有良好的交互性,能夠將教師的.思路和策略以軟件的形式來體現,更好地為教學服務。
五、關于學法的指導
"授人以魚,不如授人以漁",在教學過程中,不但要傳授學生課本知識,還要培養(yǎng)學生主動觀察、主動思考、自我發(fā)現的學習能力,增強學生的綜合素質,從而到達教學的目標。教學中,教師創(chuàng)設疑問,學生想辦法解決疑問,經過教師的啟發(fā)點撥,類比推理,在積極的雙邊活動中,學生找到了解決疑難的方法。整個過程貫穿"設疑"——"思索"——"發(fā)現"——"解惑"四個環(huán)節(jié),學生隨時對所學知識產生有意注意,思想上經歷了從肯定到否定、又從否定到肯定的辨證思維過程,貼合學生認知水平,培養(yǎng)了學習能力。
六、關于教學程序的設計
。ㄒ唬┱n題導入
這是本章的第一節(jié)課,是起始課,講起始課時,把這一學科的資料作一個大概的介紹,能使學生從一開始就對將要學習的知識有一個初步的了解,并為下頭的學習打下思想基礎。所以,首先閱讀引言,明確任務,激發(fā)興趣。由學生感興趣的乒乓球比賽提出問題,引出學習本節(jié)的必要性,明確研究計數方法是本章資料的獨特性,從應用的廣泛看學習本章資料的重要性。同時板書課題(分類計數原理與分步計數原理)
這樣做,能使學生明白本節(jié)資料的地位和作用,激發(fā)其學習新知識的欲望,為順利完成教學任務做好思維上的準備。
。ǘ┬抡n講授
經過幻燈片給出問題,配圖分析,講清坐火車與坐汽車兩類方法均可,每類中任一種辦法都能夠獨立地把從甲地到乙地這件事辦好。
緊跟著給出:
引申1:若甲地到乙地一天中還有4班輪船可乘,那么一天中,坐這些交通工具從甲地到一點共有多少種不一樣的走法?
引伸2:若完成一件事,有類辦法。在第1類辦法中有種不一樣方法,在第2類辦法中有種不一樣的方法,……,在第類辦法中有種不一樣方法,每一類中的每一種方法均可完成這件事,那么完成這件事共有多少種不一樣方法?
這個問題的兩個引申由漸入深、循序漸進為學生理解分類計數原理做好了準備。
板書分類計數原理資料:
完成一件事,有類辦法。在第1類辦法中有種不一樣方法,在第2類辦法中有種不一樣的方法,……,在第類辦法中有種不一樣方法,那么完成這件事共有種不一樣的方法。(也稱加法原理)
此時,趁學生對于原理有了一個較清晰的認識,引導學生分析分類計數原理資料,啟發(fā)總結得下頭三點注意:(出示幻燈片)
。1)各分類之間相互獨立,都能完成這件事;
。2)根據問題的特點在確定的分類標準下進行分類;
。3)完成這件事的任何一種方法必屬于某一類,并且分別屬于不一樣兩類的兩種方法都是不一樣的方法。
這樣做加深學生對分類計數原理的正確理解,突出了重點,突破了難點。
接下來給出問題2:(出示幻燈片)
由A村去B村的道路有3條,由B村去C村的道路有2條(見圖9-1),從A村經B村去C村,共有多少種不一樣的走法?
提出問題:問題1與問題2同是研究從甲地到乙地的不一樣走法,請找出這兩個問題的不之處?學生會發(fā)現問題1中采用乘火車或乘汽車都能夠從甲地到乙地,而問題2中必須經過先乘火車后乘汽車兩個步驟才能完成從甲地到乙地這件事。
問題2的講授采用給出問題,配圖分析,組織討論,強調分步。用多媒體配不一樣的顏色閃現出六種不一樣的走法,讓學生列式求出不一樣走法數,并列舉所有走法。
歸納得出:分步計數原理(板書原理資料)
分步計數原理:做一件事,完成它需要分成n個步驟,做第一步有m1種不一樣的方法,做第二步有m2種不一樣的方法,……,做第n步有mn種不一樣的方法。那么,完成這件事共有
N=m1xm2x…xmn
種不一樣的方法。
同樣趁學生對定理有必須的認識,引導學生分析分步計數原理資料,啟發(fā)總結得下頭三點注意:(出示幻燈片)
。1)各步驟相互依存,僅有各個步驟完成了,這件事才算完成;
(2)根據問題的特點在確定的分步標準下分步;
(3)分步時要注意滿足完成一件事必須并且只需連續(xù)完成這N個步驟這件事才算完成。
。ㄈ⿷门e例
教材例1:(書架取書問題)引導學生分析解答,注意區(qū)分是分類還是分步。
例2:由數字0,1,2,3,4能夠組成多少個三位整數(各位上的數字允許重復)?本題設置了4個問題:
。1)每一個三位數是由什么構成的?(三個整數字)
(2)023是一個三位數嗎?(百位上不能是0)
。3)組成一個三位數需要怎樣做?(分成三個步驟來完成:第一步確定百位上的數字;第二步確定十位上的數字;第三步確定個位上的數字)
。4)怎樣表述?
教師巡視指導、并歸納
解:要組成一個三位數,需要分成三個步驟:第一步確定百位上的數字,從1~4這4個數字中任選一個數字,有4種選法;第二步確定十位上的數字,由于數字允許重復,共有5種選法;第三步確定個位上的數字,仍有5種選法。根據分步計數原理,得到能夠組成的三位整數的個數是N=4x5x5=100。
答:能夠組成100個三位整數。
(教師的連續(xù)發(fā)問、啟發(fā)、引導,幫忙學生找到正確的解題思路和計算方法,使學生的分析問題能力有所提高。
教師在第二個例題中給出板書示范,能幫忙學生進一步加深對兩個基本原理實質的理解,周密的研究,準確的表達、規(guī)范的書寫,對于學生周密思考、準確表達、規(guī)范書寫良好習慣的構成有著積極的促進作用,也能夠為學生后面應用兩個基本原理解排列、組合綜合題打下基礎)
。ㄋ模w納小結
師:什么時候用分類計數原理、什么時候用分步計數原理呢?
生:分類時用分類計數原理,分步時用分步計數原理。
師:應用兩個基本原理時需要注意什么呢?
生:分類時要求各類辦法彼此之間相互排斥;分步時要求各步是相互獨立的。
。ㄎ澹┱n堂練習
P222:練習1~4,學生板演第4題
。▽τ陬}4,教師有必要對三個多項式乘積展開后各項的構成給以提示)
。┎贾米鳂I(yè)
P222:練習5,6,7。
補充題:
1.在所有的兩位數中,個位數字小于十位數字的共有多少個?
。ㄌ崾荆喊词簧蠑底值拇笮∧軌蚍譃9類,共有9+8+7+…+2+1=45個個位數字小于十位數字的兩位數)
2.某學生填報高考志愿,有m個不一樣的志愿可供選擇,若只能按第一、二、三志愿依次填寫3個不一樣的志愿,求該生填寫志愿的方式的種數。
。ㄌ崾荆盒枰慈齻志愿分成三步。共有m(m-1)(m-2)種填寫方式)
3.在所有的三位數中,有且僅有兩個數字相同的三位數共有多少個?
。ㄌ崾荆耗軌蛴孟骂^方法來求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)類中每類都是9x9種,共有9x9+9x9+9x9=3x9x9=243個僅有兩個數字相同的三位數)
4.某小組有10人,每人至少會英語和日語中的一門,其中8人會英語,5人會日語,(1)從中任選一個會外語的人,有多少種選法?(2)從中選出會英語與會日語的各1人,有多少種不一樣的選法?
。ㄌ崾荆河捎8+5=13》10,所以10人中必有3人既會英語又會日語。(1)N=5+2+3;(2)N=5x2+5x3+2x3)
只要大家用心學習,認真復習,就有可能在高中的戰(zhàn)場上考取自我夢想的成績。
高中數學說課稿 8
一、教材分析:
《向量的加法》是《必修》4第二章第二單元中"平面向量的線性運算"的第一節(jié)課。本節(jié)資料有向量加法的平行四邊形法則、三角形法則及應用,向量加法的運算律及應用,大約需要1課時。向量的加法是向量的線性運算中最基本的一種運算,向量的加法及其幾何意義為后繼學習向量的減法運算及其幾何意義、向量的數乘運算及其幾何意義奠定了基礎;其中三角形法則適用于求任意多個向量的和,在空間向量與立體幾何中有很普遍的應用。所以本課在"平面向量"及"空間向量"中有很重要的地位。
二、學情分析:
學生在上節(jié)課中學習了向量的定義及表示,相等向量,平行向量等概念,明白向量能夠自由移動,這是學習本節(jié)資料的基礎。學生對數的運算了如指掌,并且在物理中學過力的合成、位移的合成等矢量的加法,所以向量的加法可經過類比數的加法、以所學的物理模型為背景引入,這樣做有利于學生更好地理解向量加法的意義,準確把握兩個加法法則的特點。
三、教學目的:
1、經過對向量加法的探究,使學生掌握向量加法的概念,結合物理學實際理解向量加法的意義。能正確領會向量加法的平行四邊形法則和三角形法則的幾何意義,并能運用法則作出兩個已知向量的和向量。
2、在應用活動中,理解向量加法滿足交換律和結合律以及表述兩個運算律的幾何意義。掌握有特殊位置關系的兩個向量之和,比如共線向量,共起點向量、共終點向量等。
3、經過本節(jié)的.學習,培養(yǎng)學生類比、遷移、分類、歸納等數學方面的能力。
四、教學重、難點:
重點:向量的加法法則。探究向量的加法法則并正確應用是本課的重點。兩個加法法則各有特點,聯系緊密,你中有我,我中有你,實質相同,可是三角形法則適用范圍更加廣泛,且簡便易行,所以是詳講資料,平行四邊形法則在本課中所占份量略少于三角形法則。
難點:對三角形法則的理解;方向相反的兩個向量的加法。主要是讓學生認識到三角形法則的實質是:將已知向量首尾相接,而不是表示向量的有向線段之間必須構成三角形。
五、教學方法:
本節(jié)采用以下教學方法:
1、類比:由數的加法運算類比向量的加法運算。
2、探究:由力的合成引入平行四邊形法則,在法則的運用中觀察圖形得出三角形法則,探求共線向量的加法,發(fā)現三角形法則適用于任意向量相加;經過圖形,觀察得出向量加法滿足交換律、結合律等,這些都體現探究式教學法的運用。
3、講解與練習:對兩個法則特點的分析,例題都采取了引導與講解的方法,學生課堂完成教材中的練習。
4、多媒體技術的運用,能直觀地表現向量的平移,相等向量的意義,更能說清兩個法則的幾何意義及運算律。
六、數學思想的體現:
1、分類的思想:總的來說本課中向量的加法分為不共線向量及共線向量兩種形式,共線向量又分為方向相同與方向相反兩種情形,然后專門對零向量與任意向量相加作了規(guī)定,這樣對任意向量的加法都做了討論,線索清楚。
2、類比思想:使之與數的加法進行類比,使學生對向量的加法不致于太陌生,既有似曾相識的感覺,又能從比較中看出兩者的不一樣,效果較好。
3、歸納思想:主要體此刻以下三個環(huán)節(jié):
、賹W完平行四邊形法則和三角形法則后,歸納總結,對不共線向量相加,兩個法則都能夠選用。
、谟晒簿向量的加法總結出三角形法則適用于任意兩個向量的相加,而三角形法則僅適用于不共線向量相加。
、蹖ο蛄考臃ǖ慕Y合律和探討中,又使學生發(fā)現了三角形法則還適用于任意多個向量的加法。歸納思想在這三個環(huán)節(jié)中的運用,使得學生對兩個加法法則,尤其是三角形法則的理解,步步深入。
七、教學過程:
1、回顧舊知:本節(jié)要進行向量的平移,且對向量加法分共線與不共線兩種情景,所以要復習向量、相等向量、共線向量等概念,這些都是新課學習中必要的知識鋪墊。
2、引入新課:
。1)平行四邊形法則的引入。
學生在物理學中雖然接觸過位移的合成,可是并沒有構成三角形法則的概念;而對平行四邊形法則學生已學過,很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點是起點相同,可是物理中力的合成是在有相同的作用點的條件下合成的,引入到數學中向量加法的平行四邊形法則,所給出的圖形也是現成的平行四邊形,而學生剛學完相等向量,對相等向量的概念還沒有深刻的認識,易產生誤解:表示兩個已知向量的有向線段的起點必須在一起才能用平行四邊形法則,不在一起不能用。這時要經過講解例1,使學生認識到能夠經過平移向量,使表示兩個向量的有向線段有共同的起點。這一點對理解及運用法則求兩向量的和很重要。
設計意圖:本著從學生最熟悉、離學生最近的知識經驗為接入點,用學生熟知的方法來解決新的問題——向量的加法,這樣新中有舊,學生容易理解,也使學科間的滲透發(fā)揮了作用,加深了學生對向量加法的平行四邊形法則的"起點相同"這一特點的認識,例1的講解使學生認識到當表示向量的有向線段的起點不在一起時,須把起點移到一起,至此才能使學生完成對平行四邊形法則理解真正到位。
(2)三角形法則的引入。三角形法則沒有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入。
所以這種把兩個向量相加的方法稱為三角形法則。接下來用幻燈片完整展示三角形法則,同時法則的作法敘述、作圖過程對學生也起到了示例的作用。于是前面的例1還能夠利用三角形法則來做。
這時,總結出兩個不共線向量求和時,平行四邊形法則與三角形法則都能夠用。
設計意圖:由平行四邊形法則的圖形引入三角形法則,能夠很清楚地使學生從向何意義上認識到兩個法則之間的密切聯系,理解它們的實質,并且銜接自然,能夠使學生比較地得出兩個法則的特點與實質,并對兩個法則的特點有較深刻的印象。
。3)共線向量的加法。
方向相同的兩個向量相加,對學生來說較易完成,"將它們接在一起,取它們的方向及長度之和,作為和向量的方向與長度。"引導學生分析作法,結果發(fā)現還是運用了三角形法則:首尾相接,方向由第一個向量的起點指向第二個向量的終點。
方向相反的兩個向量相加,對學生來說是個難點,首先從作圖上不明白怎樣做。可是學生學過有理數加法中的異號兩數相加:"異號兩數相加,用較大的絕對值減去較小的絕對值,符號取絕對值較大的數的符號。"類比異號兩數相加,他們會用較長的模減去較短的模,方向取模較長的向量的方向。具體做法由教師引導學生嘗試運用三角形法則去做,發(fā)現結論正確。
反思過程,學生自然會想到方向相同的兩個向量相加,類似于同號兩數相加。這說明兩個共線向量相加依然可用三角形法則經過以上幾個環(huán)節(jié)的討論,能夠作個簡單的小結:兩個不共線向量相加,可采用平行四邊形法則或三角形法則,而兩個共線向量相加在本課所學方法中只能用三角形法則,說明三角形法則適用于任意兩個向量相加。
設計意圖:經過對共線向量加法的探討,拓寬了學生對三角形法則的認識,使得不一樣位置的向量相加都有了依據,并且采用類比的方法,使學生對共線向量的加法,尤其是方向相反的兩個向量的加法更易于理解,能夠化解難點。
(4)向量加法的運算律。
、俳粨Q律:交換律是利用平行四邊形法則的圖形,又結合三角形法則得出,理解起來沒什么困難,再一次強化了學生對兩個法則特點及實質的認識。
、诮Y合律:結合律是經過三個向量首尾相接,先加前兩個再與第三個向量相加,和先加后兩個向量再與第一個向量相加所得結果相同。
接下來是對應的兩個練習,運用交換律與結合律計算向量的和。
設計意圖:運算律的引入給加法運算帶來方便,從后面的練習中學生能夠體會到這點。由結合律還使學生發(fā)現,多個向量相加,同樣能夠運用三角形法則:將所加向量首尾相接,和向量的方向是由第一個向量的起點指向最終一個向量的終點。這樣使學生明白,三角形法則適用于任意多個向量相加。
3、小結:
先由學生小結,檢查學生對本課重要知識的認識,也給學生一個概括本節(jié)知識的機會,然后用課件展示小結資料,使學生印象更深。
。1)平行四邊形法則:起點相同,適用于不共線向量的求和。
(2)三角形法則首尾相接,適用于任意多個向量的求和。
(3)運算律。
高中數學說課稿 9
一、說教材
1、教材的地位、作用及編寫意圖。
《對數函數》出此刻職業(yè)高中數學第一冊第四章第四節(jié)。函數是高中數學的核心,對數函數是函數的重要分支,對數函數的知識在數學和其他許多學科中有著廣泛的應用;學生已經學習了對數、反函數以及指數函數等資料,這為過渡到本節(jié)的學習起著鋪墊作用;"對數函數"這節(jié)教材,指出對數函數和指數函數互為反函數,反映了兩個變量的相互關系,蘊含了函數與方程的數學思想與數學方法,是以后數學學習中不可缺少的部分,也是高考的必考資料。
2、教學目標的確定及依據。
依據教學大綱和學生獲得知識、培養(yǎng)能力及思想教育等方面的要求:我制定了如下教育教學目標:
。1)知識目標:理解對數函數的概念、掌握對數函數的圖象和性質。
。2)能力目標:培養(yǎng)學生自主學習、綜合歸納、數形結合的能力。
。3)德育目標:培養(yǎng)學生對待知識的科學態(tài)度、勇于探索和創(chuàng)新的精神。
。4)情感目標:在民主、和諧的教學氣氛中,促進師生的情感交流。
3、教學重點、難點及關鍵。
重點:對數函數的概念、圖象和性質;
難點:利用指數函數的圖象和性質得到對數函數的圖象和性質;
關鍵:抓住對數函數是指數函數的反函數這一要領。
二、說教法
大部分學生數學基礎較差,理解能力,運算能力,思維能力等方面參差不齊;同時學生學好數學的自信心不強,學習積極性不高。針對這種情景,在教學中,我引導學生從實例出發(fā)啟發(fā)指數函數的定義,在概念理解上,用步步設問、課堂討論來加深理解。在對數函數圖像的畫法上,我借助多媒體,演示作圖過程及圖像變化的動畫過程,從而使學生直接地理解并提高學生的學習興趣和積極性,很好地突破難點和提高教學效率。
三、說學法
教給學生方法比教給學生知識更重要,本節(jié)課注重調動學生積極思考、主動探索,盡可能地增加學生參與教學活動的時間和空間,我進行了以下學法指導:
(1)對照比較學習法:學習對數函數,處處與指數函數相對照。
。2)探究式學習法:學生經過分析、探索、得出對數函數的定義。
(3)自主性學習法:經過實驗畫出函數圖象、觀察圖象自得其性質。
。4)反饋練習法:檢驗知識的應用情景,找出未掌握的資料及其差距。
這樣可發(fā)揮學生的主觀能動性,有利于提高學生的各種能力。
四、說教學程序
1、復習導入:
。1)復習提問:什么是對數?如何求反函數?指數函數的圖象和性質如何?學生回答,并利用課件展示一下指數函數的圖象和性質。
設計意圖:設計的提問既與本節(jié)資料有密切關系,又有利于引入新課,為學生理解新知識清除了障礙,有意識地培養(yǎng)學生分析問題的能力。
。2)導言:指數函數有沒有反函數?如果有,如何求指數函數的反函數?它的反函數是什么?
設計意圖:這樣的導言可激發(fā)學生求知欲,使學生渴望明白問題的.答案。
2、認定目標(出示教學目標)。
3、導學達標:
按"教師為主導,學生為主體,訓練為主線"的原則,安排師生互動活動。
。1)對數函數的概念:
引導學生從對數式與指數式的關系及反函數的概念進行分析并推導出,指數函數有反函數,并且y=ax(a》0且a≠1)的反函數是y=logax,見課件。把函數y=logax叫做對數函數,其中a》0且a≠1。從而引出對數函數的概念,展示課件。
設計意圖:對數函數的概念比較抽象,利用已經學過的知識逐步分析,這樣引出對數函數的概念過渡自然,學生易于理解。因為對數函數是指數函數的反函數,讓學生比較它們的定義域、值域、對應法則及圖象間的關系,培養(yǎng)學生參與意識,經過比較充分體現指數函數及對數函數的內在聯系。
。2)對數函數的圖象:
提問:同指數函數一樣,在學習了函數的定義之后,我們要畫函數的圖象,應如何畫對數函數的圖象呢?讓學生思考并回答,用描點法畫圖。教師肯定,我們每學習一種新的函數都能夠根據函數的解析式,列表、描點畫圖。再研究一下,我們還能夠用什么方法畫出對數函數的圖象呢?
讓學生回答,畫出指數函數關于直線y=x對稱的圖象,就是對數函數的圖象。
教師總結:我們畫對數函數的圖象,既可用描點法,也可用圖象變換法,下邊我們利用兩種方法畫對數函數的圖象。
方法一(描點法)首先列出x,y(y=log2x,y=logx)值的對應表,因為對數函數的定義域為x>0,所以可取x=……1,2,4,8……,請計算對應的y值,然后在坐標系內描點、畫出它們的圖象。
方法二(圖象變換法)因為對數函數和指數函數互為反函數,圖象關于直線y=x對稱,所以只要畫出y=ax的圖象關于直線y=x對稱的曲線,就能夠得到y=logax的圖象。學生動手做實驗,先描出y=2x的圖象,畫出它關于直線y=x對稱的曲線,它就是y=log2x的圖象;類似的從y=()x的圖象畫出y=logx的圖象,再出示課件,教師加以解釋。
設計意圖:用這種對稱變換的方法畫函數的圖象,能夠加深和鞏固學生對互為反函數的兩個函數之間的認識,便于將對數函數的圖象和性質與指數函數的圖象和性質對照,但使用描點法畫函數圖象更為方便,兩種方法可同時進行,分析畫法之后,可讓學生自由選擇畫法。這樣能夠充分調動學生自主學習的積極性。
。3)對數函數的性質:
在理解對數函數定義的基礎上,掌握對數函數的圖象和性質是本節(jié)的重點,關鍵在于抓住對數函數是指數函數的反函數這一要領,講對數函數的性質,可先在同一坐標系內畫出上述兩個對數函數的圖象,根據圖象讓學生列表分析它們的圖象特征和性質,然后出示課件,教師補充。作了以上分析之后,再分a>1與0
設計意圖:這種講法既嚴謹又直觀易懂,還能讓學生主動參與教學過程,對培養(yǎng)學生的創(chuàng)新能力有幫忙,學生易于理解易于掌握,并且利用表格,能夠突破難點。
由于對數函數和指數函數互為反函數,它們的定義域與值域正好互換,為了揭示這兩種函數之間的內在聯系,列出指數函數與對數函數對照表(見課件)
設計意圖:經過比較對照的方法,學生更好地掌握兩個函數的定義、圖象和性質,認識兩個函數的內在聯系,提高學生對函數思想方法的認識和應用意識。
4、鞏固達標(見課件)。
這一訓練是為了培養(yǎng)學生利用所學知識解決實際問題的能力,經過這個環(huán)節(jié)學生能夠加深對本節(jié)知識的理解和運用,并從講解過程中找出所涉及的知識點,予以總結。充分體現"數形結合"和"分類討論"的思想。
5、反饋練習(見課件)。
習題是對學生所學知識的反饋過程,教師能夠了解學生對知識掌握的情景。
6、歸納總結(見課件)。
引導學生對主要知識進行回顧,使學生對本節(jié)有一個整體的把握,所以,從三方面進行總結:對數函數的概念、對數函數的圖象和性質、比較對數值大小的方法。
7、課外作業(yè):
。1)完成P782、3題。
五、說板書
板書設計為表格式(見課件),這樣的板書簡明清楚,重點突出,加深學生對圖象和性質的理解和掌握,便于記憶,有利于提高教學效果。
高中數學說課稿 10
一、說教材
(1)說教材的內容和地位
本次說課的內容是人教版高一數學必修一第一單元第一節(jié)《集合》(第一課時)。集合這一課里,首先從初中代數與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結合實例對集合的概念作了說明。然后,介紹了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知識安排在高中數學的最開始,是因為在高中數學中,這些知識與其他內容有著密切聯系,它們是學習、掌握以及使用數學語言的基礎。從知識結構上來說是為了引入函數的定義。因此在高中數學的模塊中,集合就顯得格外的舉足輕重了。
。2)說教學目標
根據教材結構和內容以及教材地位和作用,考慮到學生已有的認知結構與心理特征,依據新課標制定如下教學目標:
1.知識與技能:掌握集合的基本概念及表示方法。了解"屬于"關系的意義,掌握集合元素的特征。
2.過程與方法:通過情景設置提出問題,揭示課題,培養(yǎng)學生主動探究新知的習慣。并通過"自主、合作與探究"實現"一切以學生為中心"的理念。
3.情感態(tài)度與價值觀:感受數學的人文價值,提高學生的學習數學的興趣,由集合的學習感受數學的簡潔美與和諧統一美。同時通過自主探究領略獲取新知識的喜悅。
。3)說教學重點和難點
依據課程標準和學生實際,我確定本課的教學重點為:
教學重點:集合的基本概念及元素特征。
教學難點:掌握集合元素的三個特征,體會元素與集合的.屬于關系。
二、說教法和學法
接下來則是說教法、學法
教法與學法是互相聯系和統一的,不能孤立去研究。什么樣的教法必帶來相應的學法,以遵循啟發(fā)性原則為出發(fā)點,就本節(jié)課而言,我采用"生活實例與數學實例"相結合,"師生互動與課堂布白"相輔助的方法。通過不同層次的練習體驗,憑借有趣、實用的教學手段,突出重點,突破難點。然而,學生是學習的主人,以學生為主體,創(chuàng)造條件讓學生參與探究活動,不僅提高了學生探究能力,更讓學生獲得學習的技能和激發(fā)學生的學習興趣。因此,本次活動采用的學法有自主探究、觀察發(fā)現、合作交流、歸納總結等。
總之,不管采取什么教法和學法,每節(jié)課都應不斷研究學生的學習心理機制,不斷優(yōu)化教師本身的教學行為,自始至終以學生為主體,為學生創(chuàng)造和諧的課堂氛圍。
三、說教學過程
接著我來說一下最重要的部分,本節(jié)課的教學過程:
這節(jié)課的流程主要分為六個環(huán)節(jié):創(chuàng)設情境(引入目標)、自主探究(感知目標)、討論辨析(理解目標)、變式訓練(鞏固目標)、課堂小結(自我評價)、作業(yè)布置(反饋矯正)。上述六個環(huán)節(jié)由淺入深,層層遞進。多層次、多角度地加深對概念的理解。提高學生學習的興趣,以達到良好的教學效果。
第一環(huán)節(jié):創(chuàng)設問題情境,引入目標
課堂開始我將提出兩個問題:
問題1:班級有20名男生,16名女生,問班級一共多少人?
問題2:某次運動會上,班級有20人參加田賽,16人參加徑賽,問一共多少人參加比賽?
這里我會讓學生以小組討論的形式進行討論問題,事實上小組合作的形式是本節(jié)課主要形式。
待學生討論完畢以后我將作歸納總結:問題2已無法用學過的知識加以解釋,這是與集合有關的問題,因此需用集合的語言加以描述(同時我將板書標題:集合)。
安排這一過程的意圖是為了從實際問題引入,讓學生了解數學來源于實際。從而激發(fā)學生參與課堂學習的欲望。
很自然地進入到第二環(huán)節(jié):自主探究
讓學生閱讀教材,并思考下列問題:
。1)有那些概念?
。2)有那些符號?
。3)集合中元素的特性是什么?
安排這一過程的意圖是給學生提供活動空間,讓主體主動建構自己的知識結構。培養(yǎng)學生的探究能力。
讓學生自主探究之后將進入第三環(huán)節(jié):討論辨析
小組合作探究(1)
讓學生觀察下列實例
。1)1~20以內的所有質數;
。2)所有的正方形;
。3)到直線的距離等于定長的所有的點;
。4)方程的所有實數根;
通過以上實例,辨析概念:
(1)集合含義:一般地,某些指定的對象集在一起就成為一個集合,也簡稱集。而集合中的每個對象叫做這個集合的元素。
。2)表示方法:集合通常用大括號{}或大寫的拉丁字母A,B,C…表示,而元素用小寫的拉丁字母a,b,c…表示。
小組合作探究(2)——集合元素的特征
問題3:任意一組對象是否都能組成一個集合?集合中的元素有什么特征?
問題4:某單位所有的"帥哥"能否構成一個集合?由此說明什么?
集合中的元素必須是確定的
問題5:在一個給定的集合中能否有相同的元素?由此說明什么?
集合中的元素是不重復出現的
問題6:咱班的全體同學組成一個集合,調整座位后這個集合有沒有變化?由此說明什么?集合中的元素是沒有順序的
我如此設計的意圖是因為:問題是數學的心臟,感受問題是學習數學的根本動力。
小組合作探究(3)——元素與集合的關系
問題7:設集合A表示"1~20以內的所有質數",那么3,4,5,6這四個元素哪些在集合A中?哪些不在集合A中?
問題8:如果元素a是集合A中的元素,我們如何用數學化的語言表達?
a屬于集合A,記作a∈A
問題9:如果元素a不是集合A中的元素,我們如何用數學化的語言表達?
a不屬于集合A,記作aA
小組合作探究(4)——常用數集及其表示方法
問題10:自然數集,正整數集,整數集,有理數集,實數集等一些常用數集,分別用什么符號表示?
自然數集(非負整數集):記作N
正整數集:
整數集:記作Z
有理數集:記作Q實數集:記作R
設計意圖:由于不同的人對同一問題有不同的體驗和理解。讓學生通過合作交流相互得到啟發(fā),從而不斷完善自己的知識結構。
第四環(huán)節(jié):理論遷移變式訓練
1.下列指定的對象,能構成一個集合的是
、俸苄〉臄
、诓怀^30的非負實數
、壑苯亲鴺似矫鎯葯M坐標與縱坐標相等的點
④π的近似值
、菟袩o理數
A、②③④⑤B、①②③⑤C、②③⑤D、②③④
第五環(huán)節(jié):課堂小結,自我評價
1.這節(jié)課學習的主要內容是什么?
2.這節(jié)課主要解釋了什么數學思想?
設計意圖:引導學生對所學知識、思想方法進行小結,形成知識系統。教師用激勵性的語言加一點評,讓學生的思想敞亮的發(fā)揮出來。
第六環(huán)節(jié):作業(yè)布置,反饋矯正
1.必做題課本習題1.1—1、2、3。
2.選做題已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,求實數a的值。
設計意圖:充分考慮到學生的差異性,讓所有學生都有成功的情感體驗。
四、板書設計
好的板書就像一份微型教案,為了讓學生直觀易懂的看筆記,板書應設計得有條理性、概括性、指導性,所以我設計的板書如下:
集合
1.集合的概念
2.集合元素的特征
。▽W生板演)
3.常見集合的表示
4.范例研究
高中數學說課稿 11
一、說教材
1.內容分析:本節(jié)課是“反比例函數”的第一節(jié)課,是繼正比例函數、一次函數之后,二次函數之前的又一類型函數,本節(jié)課主要通過豐富的生活事例,讓學生歸納出反比例函數的概念,并進一步體會函數是刻畫變量之間關系的數學模型,從中體會函數的模型思想。因此本節(jié)課重點是理解和領悟反比例函數的概念,所滲透的數學思想方法有:類比,轉化,建模。
2.學情分析:對八年級學生來說,雖然他們已經對函數,正比例函數,一次函數的概念、圖象、性質以及應用有所掌握,但他們面對新的一次函數時,還可能存在一些思維障礙,如學生不能準確地找出變量之間的自變量和因變量,以及如何從事例中領悟和總結出反比例函數的概念,因此,本節(jié)課的難點是理解和領悟反比例函數的概念。
二、說教學目標
根據本人對《數學課程標準》的理解與分析,考慮學生已有的認知結構、心理特征,我把本課的目標定為:
1.從現實的情境和已有的知識經驗出發(fā),討論兩個變量之間的相依關系,加深對函數概念的理解。
2.經歷抽象反比例函數概念的過程,領會反比例函數的意義,理解反比例函數的概念。
三、說教法
本節(jié)課從知識結構呈現的角度看,為了實現教學目標,我建立了“創(chuàng)設情境→建立模型→解釋知識→應用知識”的學習模式,這種模式清晰地再現了知識的生成與發(fā)展的過程,也符合學生的認知規(guī)律。于是,從教學內容的性質出發(fā),我設計了如下的課堂結構:創(chuàng)設出電流、行程等情境問題讓學生發(fā)現新知,把上述問題進行類比,導出概念,獲得新知,最后總結評價、內化新知。
四、說學法
我認為學生將實際問題轉化成函數的能力是有限的`,所以我借助多媒體輔助教學,指導學生通過類比、轉化、直觀形象的觀察與演示,親身經歷函數模型的轉化過程,為學生攻克難點創(chuàng)造條件,同時考慮到本課的重點是反比例函數概念的教學,也考慮到概念教學要從大量實際出發(fā),通過事例幫助完成定義。
好學教育:
因此,我采用了“問題式探究法”的教法,利用多媒體設置豐富的問題情境,讓學生的思維由問題開始,到問題深化,讓學生的思維始終處于積極主動的狀態(tài),并隨著問題的深入而跳躍。
高中數學說課稿 12
新課標指出,高中數學課程的教學要能提高學生的“四基、四能”,根據這一課程目標,本節(jié)課我將從教材分析、教學目標、教學過程等幾個方面來展開我的說課。
一、說教材
本節(jié)課選自人教A版高中數學必修3第三章。本節(jié)課的內容是在古典概型基礎上的進一步發(fā)展,是等可能事件的概念從有限向無限的延伸。通過本節(jié)課的學習,學生能進一步體會實驗結果的隨機性與規(guī)律性,并體會到對事物的看法不應該持絕對化的觀點。
二、說學情
高中生智力發(fā)育已趨于成熟,對于未知事物有著很強的探究欲望,且此前古典概型的'學習為本節(jié)課打下了良好的基礎。但基能力件有無數多個的發(fā)現以及此種情況下概率該如何計算,學生并不容易想到。因此我會從具體的生活、實踐問題入手,組織學生開展活動,在觀察、思考中抽象、概括本節(jié)課的要點。
三、說教學目標
結合以上分析,我制定本節(jié)課教學目標如下:
(一)知識與技能
初步體會幾何概型的意義,掌握幾何概型的概率計算公式,并能進行簡單應用。
(二)過程與方法
在通過幾何概型特點概括出幾何概型概率計算公式的過程中,進一步發(fā)展合情推理能力,學會運用數形結合的思想解決概率計算問題。
(三)情感、態(tài)度與價值觀
通過貼近生活的素材,激發(fā)學習數學的興趣,體會用科學的態(tài)度、辯證的思想去觀察、分析、研究客觀世界。
四、說教學重難點
同時,本節(jié)課教學重點為:幾何概型的意義及概率計算公式。教學難點為:幾何概型概率計算公式的推導。
五、說教法和學法
教學的一切活動都必須以強調學生的主動性、積極性為出發(fā)點,根據這一教學理念,本節(jié)課我將采用講授法、自主探究法、練習法等教學方法。
六、說教學過程
下面說說我的教學過程。
(一)引入新課
首先我會帶領學生復習確定隨機事件發(fā)生的概率的兩種方法,一是通過頻率估算概率,二是用古典概型的概率公式來計算事件發(fā)生的概率。但古典概型是基于試驗的所有結果是有限個,當試驗的所有可能結果有無窮多個時,無法利用之前的方法進行計算,進而進入本節(jié)課的學習。
利用復習導入,一來可以鞏固之前所學,二來將等可能事件從有限拓展到無限,引發(fā)學生的認知沖突,體現出學習本節(jié)課的必要性。
(二)講解新知
接下來是新知講解。為了讓學生初步感知幾何概型的基本特點,我會舉例:
(1)一個人到單位的時間可能是8:00~9:00之間任一時刻。
(2)往一方格中投一個石子。并請學生說說此人到達單位的時間點以及石子落在方格的哪個位置,會不會在某一時間點到達或落在某一位置的概率比較大。學生結合生活經驗能夠發(fā)現,此時基能力件有無數多個,且基能力件發(fā)生是等可能的。
僅僅知道特點還是不夠的,還要知道相應概率的求法。為了讓學生有更直觀的感知,我會出示具體問題:如圖,甲、乙兩人玩轉盤游戲,規(guī)定當指針指向B區(qū)域時,甲獲勝,否則乙獲勝。請學生思考在兩種情況下甲獲勝的概率分別是多少。
高中數學說課稿 13
一、教材分析:
集合概念及其基本理論,稱為集合論,是近、現代數學的一個重要的基礎,一方面,許多重要的數學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學思想,在越來越廣泛的領域種得到應用。
二、目標分析:
教學重點、難點
重點:集合的含義與表示方法。
難點:表示法的恰當選擇。
教學目標
1.知識與技能
。1)通過實例,了解集合的含義,體會元素與集合的屬于關系;
。2)知道常用數集及其專用記號;
。3)了解集合中元素的確定性;ギ愋浴o序性;
。4)會用集合語言表示有關數學對象;
2.過程與方法
。1)讓學生經歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義。
。2)讓學生歸納整理本節(jié)所學知識。
3.情感、態(tài)度與價值觀
使學生感受到學習集合的必要性,增強學習的積極性。
三、教法分析:
1.教學方法:學生通過閱讀教材,自主學習。思考。交流。討論和概括,從而更好地完成本節(jié)課的教學目標。
2.教學手段:在教學中使用投影儀來輔助教學。
四、過程分析:
。ㄒ唬﹦(chuàng)設情景,揭示課題
1.教師首先提出問題:
。1)介紹自己的家庭、原來就讀的學校、現在的班級。
。2)問題:像"家庭"、"學校"、"班級"等,有什么共同特征?
引導學生互相交流。與此同時,教師對學生的活動給予評價。
2.活動:
。1)列舉生活中的集合的`例子;
。2)分析、概括各實例的共同特征
由此引出這節(jié)要學的內容。
設計意圖:既激發(fā)了學生濃厚的學習興趣,又為新知作好鋪墊
。ǘ┭刑叫轮嫺拍
1.教師利用多媒體設備向學生投影出下面7個實例:
。1)1-20以內的所有質數;
(2)我國古代的四大發(fā)明;
(3)所有的安理會常任理事國;
(4)所有的正方形;
。5)海南省在2004年9月之前建成的所有立交橋;
(6)到一個角的兩邊距離相等的所有的點;
(7)國興中學2004年9月入學的高一學生的全體。
2.教師組織學生分組討論:這7個實例的共同特征是什么?
3.每個小組選出--位同學發(fā)表本組的討論結果,在此基礎上,師生共同概括出7個實例的特征,并給出集合的含義。
一般地,指定的某些對象的全體稱為集合(簡稱為集)。集合中的每個對象叫作這個集合的元素。
4.教師指出:集合常用大寫字母A,B,C,D,…表示,元素常用小寫字母…表示。
設計意圖:通過實例讓學生感受集合的概念,激發(fā)學習的興趣,培養(yǎng)學生樂于求索的精神
。ㄈ┵|疑答辯,發(fā)展思維
1.教師引導學生閱讀教材中的相關內容,思考:集合中元素有什么特點?并注意個別輔導,解答學生疑難。使學生明確集合元素的三大特性,即:確定性;ギ愋院蜔o序性。只要構成兩個集合的元素是一樣的,我們就稱這兩個集合相等。
2.教師組織引導學生思考以下問題:
判斷以下元素的全體是否組成集合,并說明理由:
。1)大于3小于11的偶數;
(2)我國的小河流。
讓學生充分發(fā)表自己的建解。
3.讓學生自己舉出一些能夠構成集合的例子以及不能構成集合的例子,并說明理由。教師對學生的學習活動給予及時的評價。
4.教師提出問題,讓學生思考
。1)如果用A表示高-(3)班全體學生組成的集合,用表示高一(3)班的一位同學,是高一(4)班的一位同學,那么與集合A分別有什么關系?由此引導學生得出元素與集合的關系有兩種:屬于和不屬于。
如果是集合A的元素,就說屬于集合A,記作。
如果不是集合A的元素,就說不屬于集合A,記作。
。2)如果用A表示"所有的安理會常任理事國"組成的集合,則中國。日本與集合A的關系分別是什么?請用數學符號分別表示。
。3)讓學生完成教材第6頁練習第1題。
5.教師引導學生回憶數集擴充過程,然后閱讀教材中的相交內容,寫出常用數集的記號。并讓學生完成習題1.1A組第1題。
6.教師引導學生閱讀教材中的相關內容,并思考。討論下列問題:
。1)要表示一個集合共有幾種方式?
。2)試比較自然語言。列舉法和描述法在表示集合時,各自有什么特點?適用的對象是什么?
。3)如何根據問題選擇適當的集合表示法?
使學生弄清楚三種表示方式的優(yōu)缺點和體會它們存在的必要性和適用對象。
設計意圖:明確集合元素的三大特性,使學生弄清楚三種表示方式的優(yōu)缺點,從而突破難點。
(四)鞏固深化,反饋矯正
教師投影學習:
(1)用自然語言描述集合{1,3,5,7,9};
。2)用例舉法表示集合
。3)試選擇適當的方法表示下列集合:教材第6頁練習第2題。
設計意圖:使學生及時鞏固所學新知,體會三種表示方式存在的必要性和適用對象
。ㄎ澹w納小結,布置作業(yè)
小結:在師生互動中,讓學生了解或體會下例問題:
1.本節(jié)課我們學習了哪些知識內容?
2.你認為學習集合有什么意義?
3.選擇集合的表示法時應注意些什么?
設計意圖:通過回顧,對概念的發(fā)生與發(fā)展過程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。
作業(yè):
1.課后書面作業(yè):第13頁習題1.1A組第4題。
2.元素與集合的關系有多少種?如何表示?類似地集合與集合間的關系又有多少種呢?如何表示?請同學們通過預習教材。
高中數學說課稿 14
大家好!我叫周婷婷,來自湖南科技大學。我說課的題目是《算法的概念》,內容選自于新課程人教A版必修3第一章第一節(jié),課時安排為兩個課時,本節(jié)課內容為第一課時。下面我將從教材分析、教學目標分析、教學方法分析、學情分析、教學過程分析等五大方面來闡述我對這節(jié)課的分析和設計:
一、教材分析
1.教材所處的地位和作用。
現代社會是一個信息技術發(fā)展很快的社會,算法進入高中數學正是反映了時代的需要,它是當今社會必備的基礎知識,算法的學習是使用計算機處理問題前的一個必要的步驟,它可以讓學生們知道如何利用現代技術解決問題。又由于算法的具體實現上可以和信息技術相結合。因此,算法的學習十分有利于提高學生的邏輯思維能力,培養(yǎng)學生的理性精神和實踐能力。
2.教學的重點和難點。
重點:初步理解算法的定義,體會算法思想,能夠用自然語言描述算法難點:把自然語言轉化為算法語言。
二、教學目標分析
1.知識目標:了解算法的含義,體會算法的思想;能夠用自然語言描述解決具體問題的算法;理解正確的算法應滿足的要求。
2.能力目標:讓學生感悟人們認識事物的一般規(guī)律:由具體到抽象,再有抽象到具體,培養(yǎng)學生的觀察能力,表達能力和邏輯思維能力。
3.情感目標:對計算機的算法語言有一個基本的了解,明確算法的要求,認識到計算機是人類征服自然的一有力工具,進一步提高探索、認識世界的能力。
三、教學方法分析
采用"問題探究式"教學法,以多媒體為輔助手段,讓學生主動發(fā)現問題、分析問題、解決問題,培養(yǎng)學生的探究論證、邏輯思維能力。
四、學情分析
算法這部分的使用性很強,與日常生活聯系緊密,雖然是新引入的章節(jié),但很容易激發(fā)學生的學習興趣。在教師的引導下,通過多媒體輔助教學,學生比較容易掌握本節(jié)課的內容。
五、教學過程分析
1.創(chuàng)設情景:我首先向學生們展示章頭圖,介紹圖中的后景是取自宋朝數學家朱世杰的數學作品《四元玉鑒》,告訴學生們章頭圖正是體現了中國古代數學與現代計算機科學的聯系,它們的基礎都是"算法"。
「設計意圖」是為了充分挖掘章頭圖的教學價值,體現
1)算法概念的由來;
2)我們將要學習的算法與計算機有關;
3)展示中國古代數學的成就;
4)激發(fā)學生學習算法的興趣。從而順其自然的過渡到本節(jié)課要討論的話題。(約4分鐘)
2.引入新課:在這一環(huán)節(jié)我首先和學生們一起回顧如何解二元一次方程組,并引導他們歸納二元一次方程組的求解步驟,從而讓學生經歷算法分析的基本過程,培養(yǎng)思維的條理性,引導學生關注更具一般性解法,形成解法向算法過渡的準備,為建立算法概念打下基礎。緊接著在此基礎上進一步復習回顧解一般的二元一次方程組的步驟,引導學生分析解題過程的結構,寫出求一般的二元一次方程組的解的算法,并把它編成程序,讓學生輸入數據,體驗計算機直接給出方程組的解。目的是讓學生明白算法是用來解決某一類問題的,從而提高學生對算法的普遍適用性的`認識,為建立算法的概念做好鋪墊。
之后,我就向學生們提出問題:到底什么是算法?如何用語言來表達算法的涵義?這里讓學生們根據剛剛的探索交流、思考并回答,然后老師進行歸納,得出算法的基本概念,并幫助學生認識算法的概念,指出有窮性,確定性,可行性。這樣可以讓學生們真正參與到算法概念的形成過程中來,體會算法思想。(約8分鐘)
3.例題講解:在這一環(huán)節(jié)我安排了兩道例題,以幫助學生們能更好地理解算法的基本概念,并應用到實際解決問題中去,而不只是單純的對數學思想的領悟。
這兩道例題均選自課本的例1和例2。
例1是讓我們設定一個程序以判斷一個數是否為質數。質數是我們之前已經學習的內容,為了能更順利地完成解題過程,這里有必要引導學生們回顧一下質數應滿足的條件,然后再根據這個來探索解題步驟。通過例1讓學生認識到求解結構中存在"重復"。為導出一般問題的算法創(chuàng)造條件,也為學習算法的自然語言表示提供前提。告訴學生們本算法就是用自然語言的形式描述的。并且設計算法一定要做到以下要求:
(1)寫出的算法必須能解決一類問題,并且能夠重復使用。
(2)要使算法盡量簡單、步驟盡量少。
。3)要保證算法正確,且計算機能夠執(zhí)行。
在例1的基礎上我們繼續(xù)研究例2,例2是要求我們設計一個利用二分法來求解方程的近似根的程序。我們首先要對算法作分析,回顧用二分法求解方程近似根的過程,然后設計出解題步驟。二分法是算法中的經典問題,具有明顯的順序和可操作的特點。因此通過例2可以讓學生進一步了解算法的邏輯結構,領會算法的思想,體會算法的的特征。同時也可以鞏固用自然語言描述算法,提高用自然語言描述算法的表達水平。另外,借助例題加強學生對算法概念的理解,體會算法具有程序性、有限性、構造性、精確性、指向性的特點,算法以問題為載體,泛泛而談沒有意義。(約20分鐘)
4.課堂小結:
。1)算法的概念和算法的基本特征。
(2)算法的描述方法,算法可以用自然語言描述。
。3)能利用算法的思想和方法解決實際問題,并能寫出一此簡單問題的算法課堂小結是一堂課內容的概括和總結,有利于學生把握本節(jié)課的重點,對所學知識有一個系統整體的認識。(約6分鐘)
5.布置作業(yè):課本練習1、2題
課后作業(yè)的布置是為了檢驗學生對本節(jié)課內容的理解和運用程度以及實際接受情況,并促使學生進一步鞏固和掌握所學內容。對作業(yè)實施分層設置,分必做和選做,利于拓展學生的自主發(fā)展的空間。
高中數學說課稿 15
我說課的內容是人教版A版必修2第三章第一節(jié)直線的傾斜角與斜率第一課時。
(一)教材分析
本節(jié)課選自必修2第三章(解析幾何的第一章)第一節(jié)直線的傾斜角與斜率第一課時,直線的傾斜角和斜率解析幾何的重要概念;是刻畫直線傾斜程度的幾何要素與代數表示;學生在原有的對直線的有關性質及平面向量的相關知識理解的基礎上,重新以解析法的方式來研究直線相關性質,而本節(jié)課直線的傾斜角與斜率,是直線的重要的幾何性質,是研究直線的方程形式,直線的位置關系等的思維的起點;另外,本節(jié)課也初步向學生滲透解析幾何的基本思想和基本方法。因此,本課有著開啟全章、滲透方法,承前啟后的作用。
(二)學情分析
本節(jié)課的教學對象是高二學生,這個年齡段的學生天性活潑,求知欲強,并且學習主動,在知識儲備上知道兩點確定一條直線,知道點與坐標的關系,實現了最簡單的形與數的轉化;了解刻畫傾斜程度可用角和正切值;具備了一定的數形結合的能力和分類討論的思想。但根據學生的認知規(guī)律,還沒有形成自覺地把數學問題抽象化的能力。所以在教學設計時需從學生的最近發(fā)展區(qū)進行探究學習,盡量讓不同層次的學生都經歷概念的形成、鞏固和應用過程。
(三)教學目標
1.理解直線的傾斜角和斜率的概念,理解直線的傾斜角的唯一性和斜率的存在性;
2.掌握過兩點的直線斜率的計算公式;
3.通過經歷從具體實例抽象出數學概念的過程,培養(yǎng)學生觀察、分析和概括能力;
4.通過斜率概念的建立以及斜率公式的構建,幫助學生進一步體會數形結合的思想,培養(yǎng)學生嚴謹求簡的數學精神。
重點:斜率的概念,用代數方法刻畫直線斜率的過程,過兩點的直線斜率的計算公式。
難點:直線的傾斜角與斜率的概念的形成,斜率公式的構建。
(四)教法和學法
課堂教學應有利于學生的數學素質的形成與發(fā)展,即在課堂教學過程中,創(chuàng)設問題的情景,激發(fā)學生主動的發(fā)現問題解決問題,充分調動學生學習的主動性、積極性;有效的滲透數學思想方法,發(fā)展學生個性思維品質,這是本節(jié)課的教學原則。根據這樣的教學原則,考慮到學生首次接觸解析幾何的內容及研究方法,所以我采用設置問題串的形式,啟發(fā)引導學生類比、聯想,產生知識遷移;通過幾何畫板演示實驗、探索交流相結合的`教學方法激發(fā)學生觀察、實驗,體驗知識的形成過程;由此循序漸進,使學生很自然達到本節(jié)課的學習目標。
(五)教學過程
環(huán)節(jié)1.指明研究方向(3min)
平面上的點可以用坐標表示,也就是幾何問題代數化。那么我們生活中見到的很多優(yōu)美的曲線能否用數來刻畫呢?
簡介17世紀法國數學家笛卡爾和費馬的數學史。
【設計意圖】使學生對解析幾何的歷史以及它的研究方向有一個大致的了解。
由此引入課題(直線的傾斜角與斜率)
環(huán)節(jié)2.活動探究(13min)
【設計意圖】讓學生經歷探究過程后掌握傾斜角和斜率兩個概念,體會概念的產生是自然的,并不是硬性規(guī)定的。
(探究活動一:傾斜角概念的得出)
問題1.如圖,對于平面直角坐標系內過兩點有且只有一條直線,過一點P的位置能確定嗎?如圖,這些不同直線的區(qū)別在哪里?
【設計意圖】引導學生發(fā)現過定點的不同直線,其傾斜程度不同。從而發(fā)現過直線上一點和直線的傾斜程度也能確定一條直線。
問題2.在直角坐標系中,任何一條直線與x軸都有一個相對傾斜程度,可以用一個什么樣的幾何量來反映一條直線與x軸的相對傾斜程度呢?
【設計意圖】引導學生探索描述直線的傾斜程度的幾何要素,由此引出傾斜角的概念:直線L與x軸相交,我們取x軸為基準,x軸正向與直線L向上的方向之間所成的角α叫做直線L的傾斜角。
問題3.依據傾斜角的定義,小組合作探究傾斜角的范圍是多少?
(探究活動二:斜率概念的得出)
問題4.日常生活中,還有沒有表示傾斜程度的量?
問題5.如果使用“傾斜角”的概念,坡度實際就是傾斜角的正切值,由此你認為還可以用怎樣的量來刻畫直線的傾斜程度?
由學生已知坡度中“前進量”不能為0,補充傾斜角是90゜的直線沒有斜率
【設計意圖】遷移、類比得出我們把一條直線的傾斜角的正切值叫做這條直線的斜率,讓學生感受數學概念來源于生活,并體驗從直觀到抽象的過程培養(yǎng)學生觀察、歸納、聯想的能力。
環(huán)節(jié)3.過程體驗(斜率公式的發(fā)現)(10min)
問題6.兩點能確定一條直線,那么兩點能確定一條直線的斜率么?
先由每名學生各自舉出兩個特殊的點。例如A(1,2)、B(3,4),獨立研究如何由這兩點求斜率,再通過學生相互討論,師生共同交流提煉出解決問題的一般方法,進而把這種方法遷移到一般化的問題上來。得出斜率公式k=y2y1。
為了深化對公式的理解,完善對公式的認識,我設計了如下三個思考問題:
思考1:如果直線AB//x軸,上述結論還適用嗎?
思考2:如果直線AB//y軸,上述結論還適用嗎?
思考3:交換A、B位置,對比值有影響嗎?
在學生充分思考、討論的基礎上,借助信息技術工具,一方面計算的值,另一方面計算傾斜角的正切值。讓學生親自操作幾何畫板,改變直線的傾斜程度,動態(tài)演示可以把教科書第84頁圖3.1-4所示的各種情況都展示出來,形象直觀,可使學生更好的把握斜率公式。
環(huán)節(jié)4.操作建構(10min)
第一部分(教材例一):如圖,已知A(3,2),B(-4,1),C(0,-1),求直線AB,BC,CA的斜率,并判斷傾斜角是銳角還是鈍角。
學生獨立完成后,請三位學生作答,師生共同評析,明確斜率公式的運用,強調可以從形的角度直接判斷直線的傾斜角是銳角還是鈍角,也可由直線的斜率的正負判斷。
第二部分(教材例二):在平面直角坐標系中,畫出經過原點且斜率分別為1,-1,2及-3的直線。
本題要求學生畫圖,目的是加強數形結合,我將請兩位同學上臺板演,其余同學在練習本上完成,因為直線經過原點,所以只要在找出另外一點就可確定,再推導斜率公式時,學生已經知道,斜率k的值與直線上P1,P2的位置無關,因此,由已知直線的斜率畫直線時,可以再找出一個特殊點即可。
環(huán)節(jié)5.小結作業(yè)(4min)
1、本節(jié)課你學到了哪些新的概念?他們之間有什么樣的關系?
2、怎樣求出已知兩點的直線的斜率?
3、本節(jié)課你還有哪些問題?
兩點直線傾斜角斜率
一點一方向
作業(yè):必做題:P.86第1,2,題
選做題:P.90探究與發(fā)現:魔法師的地毯
以上五個環(huán)節(jié)環(huán)環(huán)相扣,層層深入,以明線和暗線雙線滲透。并注意調動學生自主探究與合作交流。注意教師適時的點撥引導,學生主體地位和教師的主導作用得以體現。能夠較好的實現教學目標,也使課標理念能夠很好的得到落實。
(六)板書設計
3.1.1直線的傾斜角與斜率
1定義:傾斜角學生板演
斜率
2.斜率k與傾斜角之間的關系
3.斜率公式
高中數學說課稿 16
我叫xxx,來自xx。我說課的題目是《古典概型》,內容選自于高中教材新課程人教A版必修3第三章第二節(jié),課時安排為兩個課時,本節(jié)課內容為第一課時。下面我將從教材分析、教學目標分析、教法與學法分析、教學過程分析四大方面來闡述我對這節(jié)課的分析和設計:
一、教材分析
1.教材所處的地位和作用
古典概型是一種特殊的數學模型,也是一種最基本的概率模型,在概率論中占有相當重要的地位。它承接著前面學過的隨機事件的概率及其性質,又是以后學習條件概率的基礎,起到承前啟后的作用。
2.教學的重點和難點
重點:理解古典概型及其概率計算公式。
難點:古典概型的判斷及把一些實際問題轉化成古典概型。
二、教學目標分析
1.知識與技能目標
(1)通過試驗理解基能力件的概念和特點。
。2)在數學建模的過程中,抽離出古典概型的兩個基本特征,推導出古典概型下的概率的計算公式。
2.過程與方法:
經歷公式的推導過程,體驗由特殊到一般的數學思想方法。
3.情感態(tài)度與價值觀:
。1)用具有現實意義的實例,激發(fā)學生的學習興趣,培養(yǎng)學生勇于探索,善于發(fā)現的創(chuàng)新思想。
。2)讓學生掌握"理論來源于實踐,并把理論應用于實踐"的辨證思想。
三、教法與學法分析
1.教法分析:根據本節(jié)課的特點,采用引導發(fā)現和歸納概括相結合的教學方法,通過提出問題、思考問題、解決問題等教學過程,觀察對比、概括歸納古典概型的概念及其概率公式,再通過具體問題的提出和解決,來激發(fā)學生的學習興趣,調動學生的主體能動性,讓每一個學生充分地參與到學習活動中來。
2.學法分析:學生在教師創(chuàng)設的問題情景中,通過觀察、類比、思考、探究、概括、歸納和動手嘗試相結合,體現了學生的主體地位,培養(yǎng)了學生由具體到抽象,由特殊到一般的數學思維能力,形成了實事求是的科學態(tài)度。
、鍎(chuàng)設情景、引入新課
在課前,教師布置任務,以小組為單位,完成下面兩個模擬試驗:
試驗一:拋擲一枚質地均勻的硬幣,分別記錄"正面朝上"和"反面朝上"的次數,要求每個數學小組至少完成20次(最好是整十數),最后由代表匯總;
試驗二:拋擲一枚質地均勻的`骰子,分別記錄"1點"、"2點"、"3點"、"4點"、"5點"和"6點"的次數,要求每個數學小組至少完成60次(最好是整十數),最后由代表匯總。
在課上,學生展示模擬試驗的操作方法和試驗結果,并與同學交流活動感受,教師最后匯總方法、結果和感受,并提出兩個問題。
1.用模擬試驗的方法來求某一隨機事件的概率好不好?為什么?
不好,要求出某一隨機事件的概率,需要進行大量的試驗,并且求出來的結果是頻率,而不是概率。
2.根據以前的學習,上述兩個模擬試驗的每個結果之間都有什么特點?]
「設計意圖」通過課前的模擬實驗,讓學生感受與他人合作的重要性,培養(yǎng)學生運用數學語言的能力。隨著新問題的提出,激發(fā)了學生的求知欲望,通過觀察對比,培養(yǎng)了學生發(fā)現問題的能力。
、嫠伎冀涣、形成概念
學生觀察對比得出兩個模擬試驗的相同點和不同點,教師給出基能力件的概念,并對相關特點加以說明,加深對新概念的理解。
[基能力件有如下的兩個特點:
。1)任何兩個基能力件是互斥的;
。2)任何事件(除不可能事件)都可以表示成基能力件的和。]
「設計意圖」讓學生從問題的相同點和不同點中找出研究對象的對立統一面,這能培養(yǎng)學生分析問題的能力,同時也教會學生運用對立統一的辯證唯物主義觀點來分析問題的一種方法。教師的注解可以使學生更好的把握問題的關鍵。
例1從字母a、b、c、d中任意取出兩個不同字母的試驗中,有哪些基能力件?
先讓學生嘗試著列出所有的基能力件,教師再講解用樹狀圖列舉問題的優(yōu)點。
「設計意圖」將數形結合和分類討論的思想滲透到具體問題中來。由于沒有學習排列組合,因此用列舉法列舉基能力件的個數,不僅能讓學生直觀的感受到對象的總數,而且還能使學生在列舉的時候作到不重不漏。解決了求古典概型中基能力件總數這一難點。
觀察對比,發(fā)現兩個模擬試驗和例1的共同特點:
讓學生先觀察對比,找出兩個模擬試驗和例1的共同特點,再概括總結得到的結論,教師最后補充說明。
[經概括總結后得到:
。1)試驗中所有可能出現的基能力件只有有限個;(有限性)
(2)每個基能力件出現的可能性相等。(等可能性)
我們將具有這兩個特點的概率模型稱為古典概率概型,簡稱古典概型。
「設計意圖」培養(yǎng)運用從具體到抽象、從特殊到一般的辯證唯物主義觀點分析問題的能力,充分體現了數學的化歸思想。啟發(fā)誘導的同時,訓練了學生觀察和概括歸納的能力。通過列出相同和不同點,能讓學生很好的理解古典概型。
、缬^察分析、推導方程
問題思考:在古典概型下,基能力件出現的概率是多少?隨機事件出現的概率如何計算?
教師提出問題,引導學生類比分析兩個模擬試驗和例1的概率,先通過用概率加法公式求出隨機事件的概率,再對比概率結果,發(fā)現其中的聯系,最后概括總結得出古典概型計算任何事件的概率計算公式:
「設計意圖」鼓勵學生運用觀察類比和從具體到抽象、從特殊到一般的辯證唯物主義方法來分析問題,同時讓學生感受數學化歸思想的優(yōu)越性和這一做法的合理性,突出了古典概型的概率計算公式這一重點。
提問:
(1)在例1的實驗中,出現字母"d"的概率是多少?
。2)在使用古典概型的概率公式時,應該注意什么?
「設計意圖」教師提問,學生回答,深化對古典概型的概率計算公式的理解,也抓住了解決古典概型的概率計算的關鍵。
、枥}分析、推廣應用
例2單選題是標準化考試中常用的題型,一般是從A,B,c,D四個選項中選擇一個正確答案。如果考生掌握了考差的內容,他可以選擇唯一正確的答案。假設考生不會做,他隨機的選擇一個答案,問他答對的概率是多少?
學生先思考再回答,教師對學生沒有注意到的關鍵點加以說明。
「設計意圖」讓學生明確決概率的計算問題的關鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機事件A包含的基能力件的個數和試驗中基能力件的總數。鞏固學生對已學知識的掌握。
例3同時擲兩個骰子,計算:
。1)一共有多少種不同的結果?
。2)其中向上的點數之和是5的結果有多少種?
。3)向上的點數之和是5的概率是多少?
先給出問題,再讓學生完成,然后引導學生分析問題,發(fā)現解答中存在的問題。引導學生用列表來列舉試驗中的基能力件的總數。
「設計意圖」利用列表數形結合和分類討論,既能形象直觀地列出基能力件的總數,又能做到列舉的不重不漏。深化鞏固對古典概型及其概率計算公式的理解。培養(yǎng)學生運用數形結合的思想,提高發(fā)現問題、分析問題、解決問題的能力,增強學生數學思維情趣,形成學習數學知識的積極態(tài)度。
、樘骄克枷、鞏固深化
問題思考:為什么要把兩個骰子標上記號?如果不標記號會出現什么情況?你能解釋其中的原因嗎?
要求學生觀察對比兩種結果,找出問題產生的原因。
「設計意圖」通過觀察對比,發(fā)現兩種結果不同的根本原因是--研究的問題是否滿足古典概型,從而再次突出了古典概型這一教學重點,體現了學生的主體地位,逐漸養(yǎng)成自主探究能力。
、昕偨Y概括、加深理解
1.基能力件的特點
2.古典概型的特點
3.古典概型的概率計算公式
學生小結歸納,不足的地方老師補充說明。
「設計意圖」使學生對本節(jié)課的知識有一個系統全面的認識,并把學過的相關知識有機地串聯起來,便于記憶和應用,也進一步升華了這節(jié)課所要表達的本質思想,讓學生的認知更上一層。
㈦布置作業(yè)
課本練習1、2、3
「設計意圖」進一步讓學生掌握古典概型及其概率公式,并能夠學以致用,加深對本節(jié)課的理解。
高中數學說課稿 17
一、教材分析:
《向量的加法》是《必修》4第二章第二單元中"平面向量的線性運算"的第一節(jié)課。本節(jié)資料有向量加法的平行四邊形法則、三角形法則及應用,向量加法的運算律及應用,大約需要1課時。向量的加法是向量的線性運算中最基本的一種運算,向量的加法及其幾何意義為后繼學習向量的減法運算及其幾何意義、向量的數乘運算及其幾何意義奠定了基礎;其中三角形法則適用于求任意多個向量的和,在空間向量與立體幾何中有很普遍的應用。所以本課在"平面向量"及"空間向量"中有很重要的地位。
二、學情分析:
學生在上節(jié)課中學習了向量的定義及表示,相等向量,平行向量等概念,明白向量能夠自由移動,這是學習本節(jié)資料的基礎。學生對數的運算了如指掌,并且在物理中學過力的合成、位移的合成等矢量的加法,所以向量的加法可經過類比數的加法、以所學的物理模型為背景引入,這樣做有利于學生更好地理解向量加法的意義,準確把握兩個加法法則的特點。
三、教學目的:
1、經過對向量加法的探究,使學生掌握向量加法的概念,結合物理學實際理解向量加法的意義。能正確領會向量加法的平行四邊形法則和三角形法則的幾何意義,并能運用法則作出兩個已知向量的和向量。
2、在應用活動中,理解向量加法滿足交換律和結合律以及表述兩個運算律的幾何意義。掌握有特殊位置關系的兩個向量之和,比如共線向量,共起點向量、共終點向量等。
3、經過本節(jié)的學習,培養(yǎng)學生類比、遷移、分類、歸納等數學方面的能力。
四、教學重、難點:
重點:向量的加法法則。探究向量的加法法則并正確應用是本課的重點。兩個加法法則各有特點,聯系緊密,你中有我,我中有你,實質相同,可是三角形法則適用范圍更加廣泛,且簡便易行,所以是詳講資料,平行四邊形法則在本課中所占份量略少于三角形法則。
難點:對三角形法則的理解;方向相反的兩個向量的加法。主要是讓學生認識到三角形法則的實質是:將已知向量首尾相接,而不是表示向量的有向線段之間必須構成三角形。
五、教學方法:
本節(jié)采用以下教學方法:
1、類比:由數的加法運算類比向量的加法運算。
2、探究:由力的合成引入平行四邊形法則,在法則的運用中觀察圖形得出三角形法則,探求共線向量的加法,發(fā)現三角形法則適用于任意向量相加;經過圖形,觀察得出向量加法滿足交換律、結合律等,這些都體現探究式教學法的運用。
3、講解與練習:對兩個法則特點的分析,例題都采取了引導與講解的方法,學生課堂完成教材中的練習。
4、多媒體技術的運用,能直觀地表現向量的平移,相等向量的意義,更能說清兩個法則的幾何意義及運算律。
六、數學思想的體現:
1、分類的思想:總的來說本課中向量的加法分為不共線向量及共線向量兩種形式,共線向量又分為方向相同與方向相反兩種情形,然后專門對零向量與任意向量相加作了規(guī)定,這樣對任意向量的加法都做了討論,線索清楚。
2、類比思想:使之與數的加法進行類比,使學生對向量的加法不致于太陌生,既有似曾相識的感覺,又能從比較中看出兩者的不一樣,效果較好。
3、歸納思想:主要體此刻以下三個環(huán)節(jié):
、賹W完平行四邊形法則和三角形法則后,歸納總結,對不共線向量相加,兩個法則都能夠選用。
、谟晒簿向量的加法總結出三角形法則適用于任意兩個向量的相加,而三角形法則僅適用于不共線向量相加。
、蹖ο蛄考臃ǖ慕Y合律和探討中,又使學生發(fā)現了三角形法則還適用于任意多個向量的加法。歸納思想在這三個環(huán)節(jié)中的運用,使得學生對兩個加法法則,尤其是三角形法則的理解,步步深入。
七、教學過程:
1、回顧舊知:本節(jié)要進行向量的平移,且對向量加法分共線與不共線兩種情景,所以要復習向量、相等向量、共線向量等概念,這些都是新課學習中必要的知識鋪墊。
2、引入新課:
。1)平行四邊形法則的`引入。
學生在物理學中雖然接觸過位移的合成,可是并沒有構成三角形法則的概念;而對平行四邊形法則學生已學過,很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點是起點相同,可是物理中力的合成是在有相同的作用點的條件下合成的,引入到數學中向量加法的平行四邊形法則,所給出的圖形也是現成的平行四邊形,而學生剛學完相等向量,對相等向量的概念還沒有深刻的認識,易產生誤解:表示兩個已知向量的有向線段的起點必須在一起才能用平行四邊形法則,不在一起不能用。這時要經過講解例1,使學生認識到能夠經過平移向量,使表示兩個向量的有向線段有共同的起點。這一點對理解及運用法則求兩向量的和很重要。
設計意圖:本著從學生最熟悉、離學生最近的知識經驗為接入點,用學生熟知的方法來解決新的問題——向量的加法,這樣新中有舊,學生容易理解,也使學科間的滲透發(fā)揮了作用,加深了學生對向量加法的平行四邊形法則的"起點相同"這一特點的認識,例1的講解使學生認識到當表示向量的有向線段的起點不在一起時,須把起點移到一起,至此才能使學生完成對平行四邊形法則理解真正到位。
。2)三角形法則的引入。三角形法則沒有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入。
所以這種把兩個向量相加的方法稱為三角形法則。接下來用幻燈片完整展示三角形法則,同時法則的作法敘述、作圖過程對學生也起到了示例的作用。于是前面的例1還能夠利用三角形法則來做。
這時,總結出兩個不共線向量求和時,平行四邊形法則與三角形法則都能夠用。
設計意圖:由平行四邊形法則的圖形引入三角形法則,能夠很清楚地使學生從向何意義上認識到兩個法則之間的密切聯系,理解它們的實質,并且銜接自然,能夠使學生比較地得出兩個法則的特點與實質,并對兩個法則的特點有較深刻的印象。
。3)共線向量的加法
方向相同的兩個向量相加,對學生來說較易完成,"將它們接在一起,取它們的方向及長度之和,作為和向量的方向與長度。"引導學生分析作法,結果發(fā)現還是運用了三角形法則:首尾相接,方向由第一個向量的起點指向第二個向量的終點。
方向相反的兩個向量相加,對學生來說是個難點,首先從作圖上不明白怎樣做?墒菍W生學過有理數加法中的異號兩數相加:"異號兩數相加,用較大的絕對值減去較小的絕對值,符號取絕對值較大的數的符號。"類比異號兩數相加,他們會用較長的模減去較短的模,方向取模較長的向量的方向。具體做法由教師引導學生嘗試運用三角形法則去做,發(fā)現結論正確。
反思過程,學生自然會想到方向相同的兩個向量相加,類似于同號兩數相加。這說明兩個共線向量相加依然可用三角形法則經過以上幾個環(huán)節(jié)的討論,能夠作個簡單的小結:兩個不共線向量相加,可采用平行四邊形法則或三角形法則,而兩個共線向量相加在本課所學方法中只能用三角形法則,說明三角形法則適用于任意兩個向量相加。
設計意圖:經過對共線向量加法的探討,拓寬了學生對三角形法則的認識,使得不一樣位置的向量相加都有了依據,并且采用類比的方法,使學生對共線向量的加法,尤其是方向相反的兩個向量的加法更易于理解,能夠化解難點。
。4)向量加法的運算律
①交換律:交換律是利用平行四邊形法則的圖形,又結合三角形法則得出,理解起來沒什么困難,再一次強化了學生對兩個法則特點及實質的認識。
、诮Y合律:結合律是經過三個向量首尾相接,先加前兩個再與第三個向量相加,和先加后兩個向量再與第一個向量相加所得結果相同。
接下來是對應的兩個練習,運用交換律與結合律計算向量的和。
設計意圖:運算律的引入給加法運算帶來方便,從后面的練習中學生能夠體會到這點。由結合律還使學生發(fā)現,多個向量相加,同樣能夠運用三角形法則:將所加向量首尾相接,和向量的方向是由第一個向量的起點指向最終一個向量的終點。這樣使學生明白,三角形法則適用于任意多個向量相加。
3、小結
先由學生小結,檢查學生對本課重要知識的認識,也給學生一個概括本節(jié)知識的機會,然后用課件展示小結資料,使學生印象更深。
。1)平行四邊形法則:起點相同,適用于不共線向量的求和。
。2)三角形法則首尾相接,適用于任意多個向量的求和。
。3)運算律。
高中數學說課稿 18
一、教材分析
1.本節(jié)課內容在整個教材中的地位和作用
概括地講,二次函數的圖像在教材中起著承上啟下的作用,它的地位體現在它的思想的基礎性。一方面,本節(jié)課是對初中有關內容的深化,為后面進一步學習二次函數的性質打下基礎;另一方面,二次函數解析式中的系數由常數轉變?yōu)閰,使學生對二次函數的圖像由感性認識上升到理性認識,能培養(yǎng)學生利用數形結合思想解決問題的能力。
2.教學目標定位
根據教學大綱要求、新課程標準精神,我確定了三個層面的教學目標。
。1)基礎知識與能力目標:理解二次函數的圖像中a、b、c、k、h的作用,能熟練地對二次函數的一般式進行配方,會對圖像進行平移變換,領會研究二次函數圖像的方法,培養(yǎng)學生運用數形結合與等價轉化等數學思想方法解決問題的能力,提高運算和作圖能力;
。2)過程和方法:讓學生經歷作圖、觀察、比較、歸納的學習過程,使學生掌握類比、化歸等數學思想方法,養(yǎng)成即能自主探索,又能合作探究的良好學習習慣;
。3)情感、態(tài)度和價值觀:在教學中滲透美的教育,滲透數形結合的思想,讓學生在數學活動中學會與人相處,感受探索與創(chuàng)造,體驗成功的喜悅。
3.教學重難點
重點是二次函數各系數對圖像和形狀的影響,利用二次函數圖像平移的特例分析過程,培養(yǎng)學生數形結合的思想和劃歸思想。難點是圖像的平移變換,關鍵是二次函數頂點式中h、k的正負取值對函數圖像平移變換的影響。
二、教法學法分析
數學是發(fā)展學生思維、培養(yǎng)學生良好意志品質和美好情感的重要學科,在教學中,我們不僅要使學生獲得知識、提高解題能力,還要讓學生在教師的啟發(fā)引導下學會學習、樂于學習,感受數學學科的人文思想,感受數學的自然美。為了更好地體現在課堂教學中"教師為主導,學生為主體"的教學關系和"以人為本,以學定教"的教學理念,在本節(jié)課的教學過程中,我將緊緊圍繞教師組織——啟發(fā)引導,學生探究——交流發(fā)現,組織開展教學活動。
為此,我設計了5個環(huán)節(jié):
①創(chuàng)設情景——引入新課;
、诮涣魈骄俊l(fā)現規(guī)律;
、蹎l(fā)引導——形成結論;
、苡柧毿〗Y——深化鞏固;
、菟季S拓展——提高能力。這五個環(huán)節(jié)環(huán)環(huán)相扣、層層深入,注重關注整個過程和全體學生,充分調動了學生的參與性。
三、教學過程分析
1.創(chuàng)設情景—引入新課
教學應充分考慮學生的情感和需要,想方設法讓學生在學習中樹立信心,感受學習樂趣。根據教材內容,我首先出示一道題目,以需要畫y=2x?圖像為引子,讓學生畫y=x?和y=2x?圖像,進而比較這兩個圖像的相同點和不同點為背景切入,一方面讓學生總結復習已有知識,為后面的`學習做好鋪墊,另一方面,使學生在自己熟悉的問題中首先獲得解題成功的快樂體驗,最后引導學生總結出函數y=x?與y=ax?圖像的關系,得出本節(jié)課的第一個知識點,即二次項系數a決定圖像的開口方向和開口大小。
由淺入深,下面讓學生畫y=2x,y=2(x+1)與y=2(x+1)+3的圖像并尋找它們的聯系,再讓學生與多媒體課件展示出的圖像進行對比,最后總結出圖像的變換規(guī)律:a決定開口方向、h決定左右平移、k決定上下平移。由于二次函數的重要性,本節(jié)課我以考題為背景引入新課,可以提高學生的學習興趣,吸引學生的課堂注意力,可以讓學生實實在在感受到高考題就在我們的課本中,就在我們平常的練習中。
2.探究交流—發(fā)現規(guī)律
從特別到一般是我們發(fā)現問題、尋求規(guī)律、揭示本質最常用的方法之一。讓學生做出y=2x與y=2x+4x-1的圖像,再與課件上的圖像對比并敘述二者之間的位置關系,得出結論:若二次函數的解析式為y=ax+bx+c,先將其化成y=a(x+h)+k的形式,從而判斷出y=ax+bx+c的圖像是如何由y=ax變換得到的。在課本第42頁例1(1)中要提醒學生注意,在含有參數的解析式y=a(x+h)+k中,頂點坐標應是(-h,k),而不是(h,k)。所以,例1(1)中二次函數f(x)頂點的橫坐標是4,即-h=4,h=-4,括號里面就是x-4(這里容易出錯)。例1(2)中h、k的值是已知的,只需要確定a的值就可以了。
3.啟發(fā)引導—形成結論
前面的練習和例題,基本涵蓋了二次函數圖像平移變換的各種情況,啟發(fā)并引導了學生將實例的結論進行總結,得出y=x到y=ax,y=ax到y=a(x+h)+k,y=ax到y=ax+bx+c(其中,a均不為0)的圖像變化過程,即a>0開口向上,a<0開口向下;h正左移,h負右移;k正上移,k負下移。
4.練習小結——鞏固深化
為了鞏固和加深二次函數y=ax+bx+c中的a.b.c對圖像的影響,接下來組織學生進行課題練習,完成課本44頁練習1—3題。上課時間有限,為保證在完成教學任務的前提下,讓學生充分練習和討論,我一直堅持讓學生規(guī)范使用演草本。課堂上需要學生動手演練的地方不急于安排學生馬上討論,而是讓學生思考后將自己的答案整齊地寫在演草本上,然后小組內四人相互交換進行量分,因為是在課堂上,量分標準要簡單,我要求用30分的整分制。用時較短10分,書寫整齊規(guī)范10分,解答正確10分。
這個過程中會產生學生之間的三次競爭:
、倏凑l解的快、用時最短;
、诳凑l書寫的整齊;
、劭凑l做的對。
這個自己做和批閱的過程,也是學生對題目加深理解的過程。量完分后組織學生對不同解法進行探究,這又會產生學生之間的第四次競爭,看誰的方法簡便,思維更嚴密。當然做題時有的學生會做的很快,可以讓他們判斷黑板上演示學生的解題得分情況,這也促進在黑板上演示的學生同下面學生之間的競爭。
這個充滿競爭的過程其實也是教師通過演草本無形引導學生解決問題、收獲新知的過程,也是一個培養(yǎng)學生探究精神和思考、比較、辨別能力的過程,使學生成為學習上的主人。這樣每節(jié)課都有競爭,能使學生發(fā)現自己在學習的長處,增強了自己的自信心,切實感受到了學習的樂趣,課堂才能真正的活起來?荚囍,成績必然會逐步提高,能避免現在我們教學中學生"考試什么都不會,考完后什么都會"以及閱卷中發(fā)現的學生書寫凌亂的通病,經過長期這樣的練習,每個學生練就了快思考、求準確、寫整齊的能力。
5.延伸拓廣——提高能力
課堂教學既要面對全體學生,又應關注學生的個體差異,體現分類推進,分層教學原則。為此,我設計了一個提高練習題組,共兩道被選題目,以供學有余力的學生能夠更好的展示自己的解題能力,取得進一步提高。
高中數學說課稿 19
一、教材分析
1、《指數函數》在教材中的地位、作用和特點
《指數函數》是人教版高中數學(必修)第一冊第二章“函數”的第六節(jié)資料,是在學習了《指數》一節(jié)資料之后編排的。經過本節(jié)課的學習,既能夠對指數和函數的概念等知識進一步鞏固和深化,又能夠為后面進一步學習對數、對數函數尤其是利用互為反函數的圖象間的關系來研究對數函數的性質打下堅實的概念和圖象基礎,又因為《指數函數》是進入高中以后學生遇到的第一個系統研究的函數,對高中階段研究對數函數、三角函數等完整的函數知識,初步培養(yǎng)函數的應用意識打下了良好的學習基礎,所以《指數函數》不僅僅是本章《函數》的重點資料,也是高中學段的主要研究資料之一,有著不可替代的重要作用。
此外,《指數函數》的知識與我們的日常生產、生活和科學研究有著緊密的聯系,尤其體此刻細胞分裂、貸款利率的計算和考古中的年代測算等方面,所以學習這部分知識還有著廣泛的現實意義。本節(jié)資料的特點之一是概念性強,特點之二是凸顯了數學圖形在研究函數性質時的重要作用。
2、教學目標、重點和難點
經過初中學段的學習和高中對集合、函數等知識的系統學習,學生對函數和圖象的關系已經構建了必須的認知結構,主要體此刻三個方面:
知識維度:對正比例函數、反比例函數、一次函數,二次函數等最簡單的函數概念和性質已有了初步認識,能夠從初中運動變化的角度認識函數初步轉化到從集合與對應的觀點來認識函數。
技能維度:學生對采用“描點法”描繪函數圖象的方法已基本掌握,能夠為研究《指數函數》的性質做好準備。
素質維度:由觀察到抽象的數學活動過程已有必須的體會,已初步了解了數形結合的思想。
鑒于對學生已有的知識基礎和認知能力的分析,根據《教學大綱》的要求,我確定本節(jié)課的教學目標、教學重點和難點如下:
(1)知識目標:
、僬莆罩笖岛瘮档母拍;
、谡莆罩笖岛瘮档膱D象和性質;
、勰艹醪嚼弥笖岛瘮档母拍罱鉀Q實際問題;
(2)技能目標:
①滲透數形結合的基本數學思想方法;
、谂囵B(yǎng)學生觀察、聯想、類比、猜測、歸納的能力;
(3)情感目標:
、袤w驗從特殊到一般的學習規(guī)律,認識事物之間的普遍聯系與相互轉化,培養(yǎng)學生用聯系的觀點看問題;
、诮涍^教學互動促進師生情感,激發(fā)學生的學習興趣,提高學生抽象、概括、分析、綜合的能力;
、垲I會數學科學的應用價值。
(4)教學重點:指數函數的圖象和性質。
(5)教學難點:指數函數的圖象性質與底數a的關系。
突破難點的關鍵:尋找新知生長點,建立新舊知識的聯系,在理解概念的基礎上充分結合圖象,利用數形結合來掃清障礙。
二、教法設計
由于《指數函數》這節(jié)課的特殊地位,在本節(jié)課的教法設計中,我力圖經過這一節(jié)課的教學到達不僅僅使學生初步理解并能簡單應用指數函數的知識,更期望能引領學生掌握研究初等函數圖象性質的一般思路和方法,為今后研究其它的函數做好準備,從而到達培養(yǎng)學生學習能力的目的,我根據自我對“誘思探究”教學模式和“情景式”教學模式的認識,將二者結合起來,主要突出了幾個方面:
1、創(chuàng)設問題情景、按照指數函數的`在生活中的實際背景給出兩個實例,充分調動學生的學習興趣,激發(fā)學生的探究心理,順利引入課題,而這兩個例子又恰好為研究指數函數中底數大于1和底數大于0小于1的圖象做好了準備。
2、強化“指數函數”概念、引導學生結合指數的有關概念來歸納出指數函數的定義,并向學生指出指數函數的形式特點,請學生思考對于底數a是否需要限制,如不限制會有什么問題出現,這樣避免了學生對于底數a范圍分類的不清楚,也為研究指數函數的圖象做了“分類討論”的鋪墊。
3、突出圖象的作用、在數學學習過程中,圖形始終使我們需要借助的重要輔助手段。一位數學家以往說過“數離形時少直觀,形離數時難入微”,而在研究指數函數的性質時,更是直接由圖象觀察得出性質,所以圖象發(fā)揮了主要的作用。
4、注意數學與生活和實踐的聯系、數學的本質是來源于生活,服務于實踐。在課堂教學的引入、例題的講解和課外知識的拓展部分,都介紹了與指數函數息息相關的生活問題,力圖使學生了解到數學的基礎學科作用,培養(yǎng)學生的數學應用意識。
三、學法指導
本節(jié)課是在學習完“指數”的概念和運算后編排的,針對學生實際情景,我主要在以下幾個方面做了嘗試:
1、再現原有認知結構。在引入兩個生活實例后,請學生回憶有關指數的概念,幫忙學生再現原有認知結構,為理解指數函數的概念做好準備。
2、領會常見數學思想方法。在借助圖象研究指數函數的性質時會遇到分類討論、數形結合等基本數學思想方法,這些方法將會貫穿整個高中的數學學習。
3、在互相交流和自主探究中獲得發(fā)展。在生活實例的課堂導入、指數函數的性質研究、例題與訓練、課內小節(jié)等教學環(huán)節(jié)中都安排了學生的討論、分組、交流等活動,讓學生變被動的理解和記憶知識為在合作學習的樂趣中主動地建構新知識的框架和體系,從而完成知識的內化過程。
4、注意學習過程的循序漸進。在概念、圖象、性質、應用、拓展的過程中按照先易后難的順序層層遞進,讓學生感到有挑戰(zhàn)、有收獲,跳一跳,夠得著,不一樣難度的題目設計將盡可能照顧到課堂學生的個體差異。
四、程序設計
在設計本節(jié)課的教學過程中,本著遵循學生的認知規(guī)律、讓學生去經歷知識的構成與發(fā)展過程的原則,我設計了如下的教學程序,啟發(fā)學生逐步發(fā)現和認識指數函數的圖象和性質。
1、創(chuàng)設情景、導入新課
教師活動:
、儆秒娔X展示兩個實例,第一個是計算機價格下降問題,第二個是生物中細胞分裂的例子;
、趯W生按奇數列、偶數列分組。
學生活動:
、俜謩e寫出計算機價格y與經過月份x的關系式和細胞個數y與分裂次數x的關系式,并互相交流;
、诨貞浿笖档母拍;
、蹥w納指數函數的概念;
④分析出對指數函數底數討論的必要性以及分類的方法。
設計意圖:經過生活實例激發(fā)學生的學習動機,,掃清由概念不清而造成的知識障礙,培養(yǎng)學生思維的主動性,為突破難點做好準備;
2、啟發(fā)誘導、探求新知
教師活動:
、俳o出兩個簡單的指數函數并要求學生畫它們的圖象;
、谠跍蕚浜玫男『诎迳弦(guī)范地畫出這兩個指數函數的圖象;
③板書指數函數的性質。
學生活動:
、佼嫵鰞蓚簡單的指數函數圖象;
、诮涣鳌⒂懻;
、蹥w納出研究函數性質涉及的方面;
④總結出指數函數的性質。
設計意圖:讓學生動手作簡單的指數函數的圖象對深刻理解本節(jié)課的資料有著必須的促進作用,在學生完成基本作圖之后,教師再利用課前已列表、建立坐標系的小黑板展示準確的作圖方法,到達進一步規(guī)范學生的作圖習慣的目的,然后借助“函數作圖器”用多媒體將指數函數的圖象推廣到一般情景,學生就會很自然的經過觀察圖象總結出指數函數的性質,同時對于底數的討論也就變得順理成章。
高中數學說課稿 20
一、教材分析:
1、教材的地位與作用。
本節(jié)資料是在學生學習了"事件的可能性的基礎上來學習如何預測不確定事件(隨機事件)發(fā)生的可能性的大小。"用概率預測隨機發(fā)生的可能性大小,在日常生活、自然、科技領域有著廣泛的應用,學習本單元知識,無論是今后繼續(xù)深造(高中學習概率的乘法定理)還是參加社會實踐活動都是十分必要的。概率的概念比較抽象,概率的定義學生較難理解。
在教材的處理上,采取小單元教學,本節(jié)課安排讓學生了解求隨機事件概率的兩種方法,目的是讓學生能夠比較系統地理解概率的意義及求概率的方法,為下頭學習求比較復雜的情景的概率打下基礎。
2、重點與難點。
重點:對概率意義的理解,經過多次重復實驗,用頻率預測概率的方法,以及用列舉法求概率的方法。
難點:對概率意義的'理解和用列舉法求概率過程中在各種可能性相同條件下某一事件可能發(fā)生的總數及總的結果數的分析。
二、目的分析:
知識與技能:掌握用頻率預測概率和用列舉法求概率方法。
過程與方法:組織學生自主探究,合作交流,引導學生觀察試驗和統計的結果,進而進行分析、歸納、總結,了解并感受概率的定義的過程,引導學生從數學的視角觀察客觀世界,用數學的思維思考客觀世界,以數學的語言描述客觀世界。
情感態(tài)度價值觀:學生經歷觀察、分析、歸納、確認等數學活動,感受數學活動充滿了探索性與創(chuàng)造性,感受量變與質變的對立統一規(guī)律,同時為概率的精準、新穎、獨特的思維方法所震撼,激發(fā)學生學習數學的熱情,增強對數學價值觀的認識。
三、教法、學法分析:
引導學生自主探究、合作交流、觀察分析、歸納總結,讓學生經歷知識(概率定義計算公式)的產生和發(fā)展過程,讓學生在數學活動中學習數學、掌握數學,并能應用數學解決現實生活中的實際問題,教師是學生學習的組織者、合作者和指導者,精心設計教學情境,有序組織學生活動,讓課堂充滿生機活力,體現"教"為"學"服務這一宗旨。
四、教學過程分析:
1、引導學生探究。
精心設計問題一,學生經過對問題一的探究,一方面復習前面學過的"確定事件和不確定事件"的知識,為學好本節(jié)資料理清知識障礙,二是讓學生明確為什么要學習概率(如何預測隨機事件可能性發(fā)生大。。引導學生對問題二的探究與觀察實驗數據,使學生了解概率這一重要概念的實際背景,感受并相信隨機事件的發(fā)生中存在著統計規(guī)律性,感受數學規(guī)律的真實的發(fā)現過程。
2、歸納概括。
學生從試驗中得到的統計數字及概率呈現穩(wěn)定在某一數值附近這一規(guī)律,讓學生明確概率定義的由來。
引導學生重新對問題一和問題二的探究,分析某事件發(fā)生的各種可能性在全部可能發(fā)生結果中所占比例,得到用列舉法求概率的公式,引導學生進行理性思維,邏輯分析,既培養(yǎng)學生的分析問題能力,又讓學生明確用列舉法求概率這一簡便快捷方法的合理性。
3、舉例應用。
、乓龑W生對教材書例題、問題一、問題二中問題的進一步分析與探究,讓學生掌握用列舉法求概率的方法。
、埔龑W生對練習中的問題思考與探究,鞏固對概率公式的應用及加深對概率意義的理解。
4、深化發(fā)展。
、旁O置3個小題目,引導學生歸納、分析、總結,加深對知識與方法的理解,并學會靈活運用。
、谱寣W生設計活動資料,對知識進行升華和拓展,引導學生創(chuàng)造性地運用知識思考問題和解決問題,從而培養(yǎng)學生的創(chuàng)新意識和創(chuàng)新能力。
【高中數學說課稿】相關文章:
高中數學的說課稿04-19
高中數學經典說課稿11-25
高中數學《數列》說課稿01-18
高中數學說課稿06-12
高中數學數列說課稿06-07
高中數學說課稿06-13
高中數學數列說課稿11-20
高中數學優(yōu)秀說課稿03-03
高中數學向量說課稿09-09
高中數學優(yōu)秀說課稿03-08