- 相關(guān)推薦
高中數(shù)學(xué)立體幾何的學(xué)習(xí)方法
升入高中后,面對(duì)新的課程,新的知識(shí),新的學(xué)習(xí)方法很多學(xué)生多會(huì)感到無(wú)所適從,尤其是在高中立體幾何方面頗感頭疼。追究學(xué)生害怕立體幾何的原因,其實(shí)就是學(xué)生缺乏空間想象力,造成思維受阻。因此,培養(yǎng)學(xué)生空間想象力,突破空間思維上的障礙,是學(xué)好立體幾何的關(guān)鍵。下面簡(jiǎn)要介紹一下學(xué)好立體幾何的方法。
高中數(shù)學(xué)立體幾何的學(xué)習(xí)方法
一、逐漸提高邏輯論證能力
立體幾何的證明是數(shù)學(xué)學(xué)科中任一分之也替代不了的。因此,歷年高考中都有立體幾何論證的考察。論證時(shí),首先要保持嚴(yán)密性,對(duì)任何一個(gè)定義、定理及推論的理解要做到準(zhǔn)確無(wú)誤。符號(hào)表示與定理完全一致,定理的所有條件都具備了,才能推出相關(guān)結(jié)論。切忌條件不全就下結(jié)論。其次,在論證問(wèn)題時(shí),思考應(yīng)多用分析法,即逐步地找到結(jié)論成立的充分條件,向已知靠攏,然后用綜合法(“推出法”)形式寫(xiě)出。
二、立足課本,夯實(shí)基礎(chǔ)
學(xué)習(xí)立體幾何的一個(gè)捷徑就是認(rèn)真學(xué)習(xí)課本中定理的證明,尤其是一些很關(guān)鍵的定理的證明。定理的內(nèi)容都很簡(jiǎn)單,就是線與線,線與面,面與面之間的聯(lián)系的闡述。但定理的證明在初學(xué)的時(shí)候一般都很復(fù)雜,甚至很抽象。深刻掌握定理的內(nèi)容,明確定理的作用是什么,多用在那些地方,怎么用。
三、培養(yǎng)空間想象力
為了培養(yǎng)空間想象力,可以在剛開(kāi)始學(xué)習(xí)時(shí),動(dòng)手制作一些簡(jiǎn)單的模型用以幫助想象。例如:正方體或長(zhǎng)方體。在正方體中尋找線與線、線與面、面與面之間的關(guān)系。通過(guò)模型中的點(diǎn)、線、面之間的位置關(guān)系的觀察,逐步培養(yǎng)自己對(duì)空間圖形的想象能力和識(shí)別能力。其次,要培養(yǎng)自己的畫(huà)圖能力?梢詮暮(jiǎn)單的圖形(如:直線和平面)、簡(jiǎn)單的幾何體(如:正方體)開(kāi)始畫(huà)起。最后要做的就是樹(shù)立起立體觀念,做到能想象出空間圖形并把它畫(huà)在一個(gè)平面(如:紙、黑板)上,還要能根據(jù)畫(huà)在平面上的“立體”圖形,想象出原來(lái)空間圖形的真實(shí)形狀。空間想象力并不是漫無(wú)邊際的胡思亂想,而是以提設(shè)為根據(jù),以幾何體為依托,這樣就會(huì)給空間想象力插上翱翔的翅膀。
四、“轉(zhuǎn)化”思想的應(yīng)用
我個(gè)人覺(jué)得,解立體幾何的問(wèn)題,主要是充分運(yùn)用“轉(zhuǎn)化”這種數(shù)學(xué)思想,要明確在轉(zhuǎn)化過(guò)程中什么變了,什么沒(méi)變,有什么聯(lián)系,這是非常關(guān)鍵的。例如:
。1) 兩條異面直線所成的角轉(zhuǎn)化為兩條相交直線的夾角即過(guò)空間任意一點(diǎn)引兩條異面直線的平行線。斜線與平面所成的角轉(zhuǎn)化為直線與直線所成的角即斜線與斜線在該平面內(nèi)的射影所成的角。
。2) 異面直線的距離可以轉(zhuǎn)化為直線和與它平行的平面間的距離,也可以轉(zhuǎn)化為兩平行平面的距離,即異面直線的距離與線面距離、面面距離三者可以相互轉(zhuǎn)化。而面面距離可以轉(zhuǎn)化為線面距離,再轉(zhuǎn)化為點(diǎn)面距離,點(diǎn)面距離又可轉(zhuǎn)化為點(diǎn)線距離。
。3) 面和面平行可以轉(zhuǎn)化為線面平行,線面平行又可轉(zhuǎn)化為線線平行。而線線平行又可以由線面平行或面面平行得到,它們之間可以相互轉(zhuǎn)化。同樣面面垂直可以轉(zhuǎn)化為線面垂直,進(jìn)而轉(zhuǎn)化為線線垂直。
五、建立數(shù)學(xué)模型
新課程標(biāo)準(zhǔn)中多次提到“數(shù)學(xué)模型”一詞,目的是進(jìn)一步加強(qiáng)數(shù)學(xué)與現(xiàn)實(shí)世界的聯(lián)系。數(shù)學(xué)模型是把實(shí)際問(wèn)題用數(shù)學(xué)語(yǔ)言抽象概括,再?gòu)臄?shù)學(xué)角度來(lái)反映或近似地反映實(shí)際問(wèn)題時(shí),所得出的關(guān)于實(shí)際問(wèn)題的描述。數(shù)學(xué)模型的形式是多樣的,它們可以是幾何圖形,也可以是方程式,函數(shù)解析式等等。實(shí)際問(wèn)題越復(fù)雜,相應(yīng)的數(shù)學(xué)模型也越復(fù)雜。
從形狀的角度反映現(xiàn)實(shí)世界的物體時(shí),經(jīng)過(guò)抽象得到的空間幾何體就是現(xiàn)實(shí)世界物體的幾何模型。由于立體幾何學(xué)習(xí)的知識(shí)內(nèi)容與學(xué)生的聯(lián)系非常密切,空間幾何體是很多物體的幾何模型,這些模型可以描述現(xiàn)實(shí)世界中的許多物體。他們直觀、具體、對(duì)培養(yǎng)大家的幾何直觀能力有很大的幫助?臻g幾何體,特別是長(zhǎng)方體,其中的棱與棱、棱與面、面與面之間的位置關(guān)系,是研究直線與直線、直線與平面、平面與平面位置關(guān)系的直觀載體。學(xué)習(xí)時(shí),一方面要注意從實(shí)際出發(fā),把學(xué)習(xí)的知識(shí)與周?chē)膶?shí)物聯(lián)系起來(lái),另一方面,也要注意經(jīng)歷從現(xiàn)實(shí)的生活抽象空間圖形的過(guò)程,注重探索空間圖形的位置關(guān)系,歸納、概括它們的判定定理和性質(zhì)定理。
六、總結(jié)規(guī)律,規(guī)范訓(xùn)練
立體幾何解題過(guò)程中,常有顯著的規(guī)律性。例如:求角先定平面角、三角形去解決,正余弦定理、三角定義常用,若是余弦值為負(fù)值,異面、線面取銳角。對(duì)距離可歸納為:距離多是垂線段,放到三角形中去計(jì)算,經(jīng)常用正余弦定理、勾股定理,若是垂線難做出,用等積等高來(lái)轉(zhuǎn)換,如能建立空間坐標(biāo)系可用空間向量來(lái)解決。只有不斷總結(jié),才能不斷高。
還要注重規(guī)范訓(xùn)練,高考中反映的這方面的不足十分嚴(yán)重,不少考生對(duì)作、證、求三個(gè)環(huán)節(jié)交待不清,表達(dá)不夠規(guī)范、嚴(yán)謹(jǐn),因果聯(lián)系不充分,圖形中各元素聯(lián)系理解錯(cuò)誤,符號(hào)語(yǔ)言不會(huì)運(yùn)用等。這就要求我們?cè)谄綍r(shí)養(yǎng)成良好的答題習(xí)慣,具體來(lái)講就是按課本上例題的答題格式、步驟、推理過(guò)程等一步步把題目演算出來(lái)。答題的規(guī)范性在數(shù)學(xué)的每一部分考試中都很重要,在立體幾何中尤為重要,因?yàn)樗⒅剡壿嬐评。?duì)于即將參加高考的同學(xué)來(lái)說(shuō),考試的每一分都是重要的,在“按步給分”的原則下,以平時(shí)的每一道題開(kāi)始培養(yǎng)這種規(guī)范性的好處是很顯著的,而且很多情況下,本來(lái)很難答出來(lái)的題,一步步寫(xiě)下來(lái),思維也逐漸打開(kāi)了。
七、結(jié)語(yǔ)
總之,觀察是學(xué)好立體幾何的基礎(chǔ),作圖是學(xué)好立體幾何的保證,想象是學(xué)好立體幾何的關(guān)鍵。在立體幾何的學(xué)習(xí)中,我們要強(qiáng)調(diào)學(xué)生動(dòng)手操作和主動(dòng)參與,讓他們?cè)谟^察、操作、想象、交流等活動(dòng)中認(rèn)識(shí)空間幾何體,提高空間想象能力,進(jìn)一步提高他們的學(xué)習(xí)興趣,加深他們對(duì)數(shù)學(xué)的理解,激發(fā)出潛在的創(chuàng)造力,讓學(xué)生在不斷探索與創(chuàng)造的氛圍中發(fā)展解決問(wèn)題的能力,體會(huì)數(shù)學(xué)的價(jià)值。
高考數(shù)學(xué)立體幾何答題技巧
高考立體幾何試題一般共有4道(選擇、填空題3道,解答題1道),共計(jì)總分27分左右,考查的知識(shí)點(diǎn)在20個(gè)以內(nèi)。選擇填空題考核立幾中的計(jì)算型問(wèn)題,而解答題著重考查立幾中的邏輯推理型問(wèn)題,當(dāng)然,二者均應(yīng)以正確的空間想象為前提。隨著新的課程改革的進(jìn)一步實(shí)施,立體幾何考題正朝著“多一點(diǎn)思考,少一點(diǎn)計(jì)算”的發(fā)展。從歷年的考題變化看,以簡(jiǎn)單幾何體為載體的線面位置關(guān)系的論證,角與距離的探求是?汲P碌臒衢T(mén)話題。
知識(shí)整合
1、有關(guān)平行與垂直(線線、線面及面面)的問(wèn)題,是在解決立體幾何問(wèn)題的過(guò)程中,大量的、反復(fù)遇到的,而且是以各種各樣的問(wèn)題(包括論證、計(jì)算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復(fù)習(xí)中,首先應(yīng)從解決“平行與垂直”的有關(guān)問(wèn)題著手,通過(guò)較為基本問(wèn)題,熟悉公理、定理的內(nèi)容和功能,通過(guò)對(duì)問(wèn)題的分析與概括,掌握立體幾何中解決問(wèn)題的規(guī)律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。
2、判定兩個(gè)平面平行的方法:
(1)根據(jù)定義--證明兩平面沒(méi)有公共點(diǎn);
(2)判定定理--證明一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面;
(3)證明兩平面同垂直于一條直線。
3、兩個(gè)平面平行的主要性質(zhì):
(1)由定義知:“兩平行平面沒(méi)有公共點(diǎn)”。
(2)由定義推得:“兩個(gè)平面平行,其中一個(gè)平面內(nèi)的直線必平行于另一個(gè)平面。
(3)兩個(gè)平面平行的性質(zhì)定理:”如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線平行“。
(4)一條直線垂直于兩個(gè)平行平面中的一個(gè)平面,它也垂直于另一個(gè)平面。
(5)夾在兩個(gè)平行平面間的平行線段相等。
(6)經(jīng)過(guò)平面外一點(diǎn)只有一個(gè)平面和已知平面平行。
以上性質(zhì)(2)、(3)、(5)、(6)在課文中雖未直接列為”性質(zhì)定理“,但在解題過(guò)程中均可直接作為性質(zhì)定理引用。
解答題分步驟解決可多得分
01、合理安排,保持清醒。
數(shù)學(xué)考試在下午,建議中午休息半小時(shí)左右,睡不著閉閉眼睛也好,盡量放松。然后帶齊用具,提前半小時(shí)到考場(chǎng)。
02、通覽全卷,摸透題情。
剛拿到試卷,一般較緊張,不宜匆忙作答,應(yīng)從頭到尾通覽全卷,盡量從卷面上獲取更多的信息,摸透題情。這樣能提醒自己先易后難,也可防止漏做題。
03、解答題規(guī)范有序。
一般來(lái)說(shuō),試題中容易題和中檔題占全卷的80%以上,是考生得分的主要來(lái)源。
對(duì)于解答題中的容易題和中檔題,要注意解題的規(guī)范化,關(guān)鍵步驟不能丟,如三種語(yǔ)言(文字語(yǔ)言、符號(hào)語(yǔ)言、圖形語(yǔ)言)的表達(dá)要規(guī)范,邏輯推理要嚴(yán)謹(jǐn),計(jì)算過(guò)程要完整,注意算理算法,應(yīng)用題建模與還原過(guò)程要清晰,合理安排卷面結(jié)構(gòu)……對(duì)于解答題中的難題,得滿分很困難,可以采用“分段得分”的策略,因?yàn)楦呖奸喚硎恰胺侄卧u(píng)分”。
比如可將難題劃分為一個(gè)個(gè)子問(wèn)題或一系列的步驟,先解決問(wèn)題的一部分,能解決到什么程度就解決到什么程度,獲取一定的分?jǐn)?shù)。
有些題目有好幾問(wèn),前面的小問(wèn)你解答不出,但后面的小問(wèn)如果根據(jù)前面的結(jié)論你能夠解答出來(lái),這時(shí)候不妨引用前面的結(jié)論先解答后面的,這樣跳步解答也可以得分。
高考數(shù)學(xué)4種答題技巧
1、以退求進(jìn),立足特殊。
發(fā)散一般對(duì)于一個(gè)較一般的問(wèn)題,若一時(shí)不能取得一般思路,可以采取化一般為特殊(如用特殊法解選擇題),化抽象為具體,化整體為局部,化參量為常量,化較弱條件為較強(qiáng)條件,等等?傊,退到一個(gè)你能夠解決的程度上。
2、執(zhí)果索因,逆向思考,正難則反
對(duì)一個(gè)問(wèn)題正面思考發(fā)生思維受阻時(shí),用逆向思維的方法去探求新的解題途徑,往往能得到突破性的進(jìn)展,如果順向推有困難就逆推,直接證有困難就反證,如用分析法,從肯定結(jié)論或中間步驟入手,找充分條件;用反證法,從否定結(jié)論入手找必要條件。
3、回避結(jié)論的肯定與否定,解決探索性問(wèn)題
對(duì)探索性問(wèn)題,可以一開(kāi)始,就綜合所有條件,進(jìn)行嚴(yán)格的推理與討論,則步驟所至,結(jié)論自明。
4、應(yīng)用性問(wèn)題思路:面—點(diǎn)—線
解決應(yīng)用性問(wèn)題,首先要全面調(diào)查題意,迅速接受概念;透過(guò)冗長(zhǎng)敘述,抓住重點(diǎn)詞句,提出重點(diǎn)數(shù)據(jù);綜合聯(lián)系,提煉關(guān)系,依靠數(shù)學(xué)方法,建立數(shù)學(xué)模型,如此將應(yīng)用性問(wèn)題轉(zhuǎn)化為純數(shù)學(xué)問(wèn)題。當(dāng)然,求解過(guò)程和結(jié)果都不能離開(kāi)實(shí)際背景。
數(shù)學(xué)立體幾何解題技巧必看
1、你掌握了空間圖形在平面上的直觀畫(huà)法嗎?(斜二測(cè)畫(huà)法)。
2、線面平行和面面平行的定義、判定和性質(zhì)定理你掌握了嗎?線線平行、線面平行、面面平行這三者之間的聯(lián)系和轉(zhuǎn)化在解決立幾問(wèn)題中的應(yīng)用是怎樣的?每種平行之間轉(zhuǎn)換的條件是什么?
3、三垂線定理及其逆定理你記住了嗎?你知道三垂線定理的關(guān)鍵是什么嗎?(一面、四線、三垂直、立柱即面的垂線是關(guān)鍵)一面四直線,立柱是關(guān)鍵,垂直三處見(jiàn)
4、線面平行的判定定理和性質(zhì)定理在應(yīng)用時(shí)都是三個(gè)條件,但這三個(gè)條件易混為一談;面面平行的判定定理易把條件錯(cuò)誤地記為”一個(gè)平面內(nèi)的兩條相交直線與另一個(gè)平面內(nèi)的兩條相交直線分別平行”而導(dǎo)致證明過(guò)程跨步太大。
5、求兩條異面直線所成的角、直線與平面所成的角和二面角時(shí),如果所求的角為90°,那么就不要忘了還有一種求角的方法即用證明它們垂直的方法。
6、異面直線所成角利用“平移法”求解時(shí),一定要注意平移后所得角等于所求角(或其補(bǔ)角),特別是題目告訴異面直線所成角,應(yīng)用時(shí)一定要從題意出發(fā),是用銳角還是其補(bǔ)角,還是兩種情況都有可能。
7、兩條異面直線所成的角的范圍:0°≤α≤90°
直線與平面所成的角的范圍:0°≤α≤90°
二面角的平面角的取值范圍:0°≤α≤180°
8、平面圖形的翻折,立體圖形的展開(kāi)等一類(lèi)問(wèn)題,要注意翻折,展開(kāi)前后有關(guān)幾何元素的“不變量”與“不變性”。
9、柱及其性質(zhì)、平行六面體與長(zhǎng)方體及其性質(zhì)。這些知識(shí)你掌握了嗎?(注意運(yùn)用向量的方法解題)
10、球及其性質(zhì);經(jīng)緯度定義易混。經(jīng)度為二面角,緯度為線面角、球面距離的求法;球的表面積和體積公式。這些知識(shí)你掌握了嗎?
【高中數(shù)學(xué)立體幾何的學(xué)習(xí)方法】相關(guān)文章:
高考數(shù)學(xué)立體幾何學(xué)習(xí)方法07-22
高中數(shù)學(xué)的學(xué)習(xí)方法11-15
高中數(shù)學(xué)的學(xué)習(xí)方法03-28
高中數(shù)學(xué)的學(xué)習(xí)方法12-19
高中數(shù)學(xué)學(xué)習(xí)方法08-10
高中數(shù)學(xué)高效學(xué)習(xí)方法07-31
學(xué)高中數(shù)學(xué)的學(xué)習(xí)方法10-13
高中數(shù)學(xué)有效的學(xué)習(xí)方法04-19