久久久久无码精品,四川省少妇一级毛片,老老熟妇xxxxhd,人妻无码少妇一区二区

數學最好學習方法

時間:2022-12-20 11:42:53 學習方法 我要投稿

數學最好學習方法3篇

  在日復一日的學習、工作或生活中,大家都意識到了學習的重要性,同時,越來越多的人開始注重正確的學習方法。如果你正在為找不到正確的學習方法而苦惱,以下是小編整理的數學最好學習方法,供大家參考借鑒,希望可以幫助到有需要的朋友。

數學最好學習方法3篇

數學最好學習方法1

  數學最好學習方法

  1、做題之后加強反思

  學生一定要明確,現在正坐著的題,一定不是考試的題目。而是要運用現在正做著的題目的解題思路與方法。因此,要把自己做過的每道題加以反思。總結一下自己的收獲。要總結出,這是一道什么內容的題,用的是什么方法。做到知識成片,問題成串,日久天長,構建起一個內容與方法的科學的網絡系統。

  2、錯題本

  說到錯題本不少同學都覺得自己的記憶力好,不需要錯題本就能記住,這是一種“錯覺”,每個人都有這種感覺,等到題目增多,學習內容加深,這時就會發(fā)現自己力不從心了。錯題本能夠隨時記錄自己的知識短板,幫助強化知識體系,有助于提升學習效率。有很多學霸都是因為積極使用了錯題本,而考取了高分。

  3、夯實基礎,學會思考

  數學中考試題中,基礎分值占的最多。因此,初三數學復習教學中,必須扎扎實實地夯實基礎,使每個學生對初中數學知識都能達到“理解”和“掌握”的要求;在應用基礎知識時能做到熟練、正確和迅速。

  4、雙基訓練

  雙基即基礎知識與基本技能;A知識是指數學概念、定理、法則、公式以及各種知識之間的內在聯系;基本技能是一種較穩(wěn)定的心理因素,是一種已經程式化了的動作,初中數學基本技能包括運算技能、畫圖技能、運用數字語言的技能、推理論證的技能等。只有扎實地掌握“雙基”,才能靈活應用、深入探索,不斷創(chuàng)新。

  數學學習方法技巧

  部分分式是初中數學競賽的重要內容,在初中數學競賽中常有應用,而且在今后學習微積分時還要經常用到。部分分式中體現出來的把整體分解成部分來處理問題的方法也是一種重要的思想方法,這種方法對我們解決問題有指導意義。下面我們介紹部分分式及其應用。

  對于一個分子、分母都是多項式的分式,當分母的次數高于分子的次數時,我們把這個分式叫做真分式。如果一個分式不是真分式,可以通過帶余除法化為一個多項式與一個真分式的和。把一個真分式化為幾個更簡單的真分式的代數和,稱為將分式化為部分分式。

  把一個分式分為部分分式的一般步驟是:

 。1)把一個分式化成一個整式與一個真分式的和;

 。2)把真分式的分母分解因式;

 。3)根據真分式的分母分解因式后的形式,引入待定系數來表示成為部分分式的形式;

 。4)利用多項式恒等的性質和多項式恒等定理列出關于待定系數的方程或方程組;

 。5)解方程或方程組,求待定系數的值;

  (6)把待定系數的值代入所設的分式中,寫出部分分式。

數學最好學習方法2

  第一、學習方法不是萬能的,學習中,最寶貴的品質永遠是勤奮;

  第二、事半功倍是不可能的,學習中,永遠也不要奢望不勞而獲;

  第三、良好的學習方法,能夠保證你的付出取得限度的收獲。

  數學最好學習方法總結:

 、俟P記紙——輕松做到沒有遺漏

  做到知識點和習題類型沒有遺漏,的辦法就是把他們集中起來,按照一定的順序和思路存放,其載體一要滿足內容的不斷補充,二要方便查閱。筆記紙是最合適的工具,構造:普通的活頁紙背面左側邊緣布了一個帶拉手的雙面膠條。通過簡單操作,即可粘貼到書縫中,相當于給書加了一頁。筆記紙的使用要掌握以下技巧:

  1、建目錄。

  一本教材大約包含十章左右,每章少則幾頁,多則十幾頁,包含著若干個大標題,而每個大標題又包含若干個小標題,每個小標題又包含著若干個知識點。第一遍通讀的時候,按照章節(jié),把標題和知識點摘錄出來,寫入筆記紙,粘到章節(jié)的前面。編這樣一個目錄,所有東西就一目了然,不僅能夠找到所有的知識點,更幫助你清楚的認識知識間的關系,保證你在知識的海洋中永遠不會迷失方向。

  2、勤總結。

  把每章的重點、難點、?碱}型等,全部按照一定順序記錄到筆記紙上,粘到對應章節(jié)中間。在讀書時,要對每個段落進行標記,比如“已經理解,不用再看”、“此題簡單、不用再做”等等,這樣,復習的時候,目標明確,避免胡子眉毛一把抓,避免了時間的浪費,自然提高了效率。

  3、大盤點。

  建目錄是對每一章的盤點,大盤點則是當學完多章或者整本書的時候,對整本書進行的盤點,以明確各章在整本書中的位置和解決針對多章知識點的綜合應用的題目。此外,還要把各章中相同或相近的內容進行橫向盤點,比如把數學的公式、定理、公理等分別盤點一次,這樣能夠方便理解和記憶,是很有用處的。記錄這些內容的筆記紙,要粘在教材的目錄位置,使方便查閱。

  4、常補充。

  把課堂上老師補充的內容、自己做題時發(fā)現的新知識點、新的題型、解題心得等補充到相應章節(jié)處,不斷的充實和完善自己的知識庫。

  通過以上的付出,能夠做到對所學課程的所有知識都有清晰的認識,不僅能夠認識每一個知識點,還能認識到知識點間的關系,能夠綜合運用多個知識點解題,解題的時候,知道此題是什么類型,考察的是哪個或哪幾個知識點,在教材中的什么位置,自己是否掌握等等,真正做到沒有遺漏。

 、谧詸z本——輕松做到真正掌握

  做到真正掌握,保證需要記憶的知識點都記住了、做過的題目考試的時候肯定能做對,的辦法不是多記幾次、多做幾遍,而是在考試之前,先自己考自己,確認自己的學習成果。自檢本是最合適的工具,構造:每本若干組,每組三頁,第一頁為普通紙,第二、三頁為無碳復寫紙。抄寫題目用復寫模式,墊板放在第三頁后,在第一頁書寫后,第二、三頁也會有題目;寫答案、解題思路和答題用非復寫模式,把墊板依次放在第一、二、三頁后,書寫內容互不影響。自檢本的使用要掌握以下技巧:

  1、自檢知識點記憶成果。

  自己動手,把每個知識點都變成考題,逐個檢查自己的掌握情況。舉例說,當你記憶單詞時,復寫模式下,把中文寫在第一頁,然后在非復寫模式下,把英文抄在中文的后面。記憶過程中和過后,對照第二頁,在草稿紙上默寫,完畢后與第一頁的答案對照,并在第二頁上標記,對的打√,錯的打×,不太熟練的打△,下次記憶時,只針對打×和△的,如此反復,直到全部搞定為止。這樣做的好處,一是避免在已經會的知識上面浪費時間,二是找到不會的知識,重點解決。

  2、錯題、典型考題自檢。

  針對自己在以前考試中做錯的題、典型考題和自己認為掌握的`不好的考題,復寫模式下,在第一頁書寫題目,在非復寫模式下,在第一頁寫正確答案,在第二頁寫錯誤答案及原因分析,練習之后,參看第三頁的題目,在草稿紙上解答,完畢后與第一、二頁兩種對、錯答案對照,明確自己的效果,并在第三頁題目下方標記,寫上如“完全會了,不用再答”、“X月X日做了一遍,不熟,仍需再做“、”仍然不會、重點學習“等等,如此反復,直到全部搞定為止。

  通過以上的付出,能夠明確自己哪些已經掌握了,不用在上面浪費時間和精力了;哪些沒有掌握,需要繼續(xù)攻克。這樣,學習才有效率,成績才會逐步提高。

  知識是有限的

  要想做好學習這件事情,首先要對它有正確的認識:一個學期,一門課程,要求學生通過學習掌握的、考試考察的知識是有限的。

數學最好學習方法3

  學習方法

  首先,不要忽視課本。把高一高二的所有教學課本找出來,認認真真仔仔細細地把里面的知識點定理公理等等都看一遍,包括書上的證明也不要忽視。不是說看一遍就了事的,而是真正的去理解他。因為在你高一高二所有的月考,期中考,期末考,經歷了這么多題海戰(zhàn)術之后你要做的就是要回歸課本。你會發(fā)現有些高考題,他是很巧妙的利用了書上一些簡單的定義進行變換和引申得到的。所以當老師帶著從頭復習的時候,不要排斥,而是要回憶,消化,理解和掌握這些書本上的基礎知識。

  第二,要嘗試著去掌握一些新的定理和法則。在高一高二的時候,老師可能會說這個公式不是大綱要求的,所以不必掌握。這是完全正確的,因為當時所有的知識都是新的,你在面對過多新知識的時候,很難消化和掌握。但是現在你已經掌握了很多知識的基礎上,在去適當的結合自己的能力去了解一些考綱之外的,就更容易掌握了。比如洛必達法則,高中雖然不講,但是在答大題的時候用起來很方便的一個法則。如果你掌握了,你就會比別人做的更好更快更準確。

  1、配方法

  數學必會公式

  所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恒等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。

  2、因式分解法

  因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。

  3、換元法

  換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜4、判別式法與韋達定理

  一元二次方程ax2+bx+c=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。

  韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。

  5、待定系數法

  在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而后根據題設條件列出關于待定系數的等式,最后解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。

  6、構造法

  在解題時,我們常常會采用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利于問題的解決。

  7、反證法

  反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然后,從這個假設出發(fā),經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。

  反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;/至少有兩個。

  歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發(fā),否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。

【數學最好學習方法】相關文章:

數學最好學習方法12-20

文科生數學最好的學習方法07-20

最好的學習方法12-19

英語最好的學習方法12-07

哪些學習方法最好07-21

最好的英語學習方法11-04

初中政治最好的學習方法10-16

初中最好的學習方法11-01

最好的語文學習方法10-25