久久久久无码精品,四川省少妇一级毛片,老老熟妇xxxxhd,人妻无码少妇一区二区

三角函數(shù)公式

時間:2023-07-21 10:12:32 志升 學習總結(jié) 我要投稿
  • 相關(guān)推薦

三角函數(shù)公式大全

  三角函數(shù)作為數(shù)學的必學和重點內(nèi)容,那么所有三角函數(shù)的公式有多少呢?下面yjbys小編為大家精心整理的三角函數(shù)公式大全,歡迎大家閱讀與學習!

  銳角三角函數(shù)公式

  sin α=∠α的對邊 / 斜邊

  cos α=∠α的鄰邊 / 斜邊

  tan α=∠α的對邊 / ∠α的鄰邊

  cot α=∠α的鄰邊 / ∠α的對邊

  倍角公式

  Sin2A=2SinA?CosA

  Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

  tan2A=(2tanA)/(1-tanA^2)

  (注:SinA^2 是sinA的平方 sin2(A) )

  三倍角公式

  sin3α=4sinα·sin(π/3+α)sin(π/3-α)

  cos3α=4cosα·cos(π/3+α)cos(π/3-α)

  tan3a = tan a · tan(π/3+a)· tan(π/3-a)

  三倍角公式推導

  sin3a

  =sin(2a+a)

  =sin2acosa+cos2asina

  輔助角公式

  Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

  sint=B/(A^2+B^2)^(1/2)

  cost=A/(A^2+B^2)^(1/2)

  tant=B/A

  Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

  降冪公式

  sin^2(α)=(1-cos(2α))/2=versin(2α)/2

  cos^2(α)=(1+cos(2α))/2=covers(2α)/2

  tan^2(α)=(1-cos(2α))/(1+cos(2α))

  推導公式

  tanα+cotα=2/sin2α

  tanα-cotα=-2cot2α

  1+cos2α=2cos^2α

  1-cos2α=2sin^2α

  1+sinα=(sinα/2+cosα/2)^2

  =2sina(1-sina)+(1-2sina)sina

  =3sina-4sina

  cos3a

  =cos(2a+a)

  =cos2acosa-sin2asina

  =(2cosa-1)cosa-2(1-sina)cosa

  =4cosa-3cosa

  sin3a=3sina-4sina

  =4sina(3/4-sina)

  =4sina[(√3/2)-sina]

  =4sina(sin60°-sina)

  =4sina(sin60°+sina)(sin60°-sina)

  =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]

  =4sinasin(60°+a)sin(60°-a)

  cos3a=4cosa-3cosa

  =4cosa(cosa-3/4)

  =4cosa[cosa-(√3/2)]

  =4cosa(cosa-cos30°)

  =4cosa(cosa+cos30°)(cosa-cos30°)

  =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}

  =-4cosasin(a+30°)sin(a-30°)

  =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

  =-4cosacos(60°-a)[-cos(60°+a)]

  =4cosacos(60°-a)cos(60°+a)

  上述兩式相比可得

  tan3a=tanatan(60°-a)tan(60°+a)

  半角公式

  tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

  cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

  sin^2(a/2)=(1-cos(a))/2

  cos^2(a/2)=(1+cos(a))/2

  tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

  三角和

  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

  兩角和差

  cos(α+β)=cosα·cosβ-sinα·sinβ

  cos(α-β)=cosα·cosβ+sinα·sinβ

  sin(α±β)=sinα·cosβ±cosα·sinβ

  tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

  tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

  和差化積

  sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

  sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]

  cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]

  cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]

  tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

  tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

  積化和差

  sinαsinβ = [cos(α-β)-cos(α+β)] /2

  cosαcosβ = [cos(α+β)+cos(α-β)]/2

  sinαcosβ = [sin(α+β)+sin(α-β)]/2

  cosαsinβ = [sin(α+β)-sin(α-β)]/2

  誘導公式

  sin(-α) = -sinα

  cos(-α) = cosα

  tan (—a)=-tanα

  sin(π/2-α) = cosα

  cos(π/2-α) = sinα

  sin(π/2+α) = cosα

  cos(π/2+α) = -sinα

  sin(π-α) = sinα

  cos(π-α) = -cosα

  sin(π+α) = -sinα

  cos(π+α) = -cosα

  tanA= sinA/cosA

  tan(π/2+α)=-cotα

  tan(π/2-α)=cotα

  tan(π-α)=-tanα

  tan(π+α)=tanα

  誘導公式記背訣竅:奇變偶不變,符號看象限

  萬能公式

  sinα=2tan(α/2)/[1+tan^(α/2)]

  cosα=[1-tan^(α/2)]/1+tan^(α/2)]

  tanα=2tan(α/2)/[1-tan^(α/2)]

  其它公式

  (1)(sinα)^2+(cosα)^2=1

  (2)1+(tanα)^2=(secα)^2

  (3)1+(cotα)^2=(cscα)^2

  證明下面兩式,只需將一式,左右同除(sinα)^2,第二個除(cosα)^2即可

  (4)對于任意非直角三角形,總有

  tanA+tanB+tanC=tanAtanBtanC

  證:

  A+B=π-C

  tan(A+B)=tan(π-C)

  (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

  整理可得

  tanA+tanB+tanC=tanAtanBtanC

  得證

  同樣可以得證,當x+y+z=nπ(n∈Z)時,該關(guān)系式也成立

  由tanA+tanB+tanC=tanAtanBtanC可得出以下結(jié)論

  (5)cotAcotB+cotAcotC+cotBcotC=1

  (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

  (7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC

  (8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC

  (9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

  cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

  sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

  tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

  三角函數(shù)公式表

  同角三角函數(shù)的基本關(guān)系式

  倒數(shù)關(guān)系: 商的關(guān)系: 平方關(guān)系:

  tan cot=1

  sin csc=1

  cos sec=1 sin/cos=tan=sec/csc

  cos/sin=cot=csc/sec sin2+cos2=1

  1+tan2=sec2

  1+cot2=csc2

  (六邊形記憶法:圖形結(jié)構(gòu)上弦中切下割,左正右余中間1記憶方法對角線上兩個函數(shù)的積為1;陰影三角形上兩頂點的三角函數(shù)值的平方和等于下頂點的三角函數(shù)值的平方;任意一頂點的三角函數(shù)值等于相鄰兩個頂點的三角函數(shù)值的乘積。)

  誘導公式(口訣:奇變偶不變,符號看象限。)

  sin(-)=-sin

  cos(-)=cos tan(-)=-tan

  cot(-)=-cot

  sin(/2-)=cos

  cos(/2-)=sin

  tan(/2-)=cot

  cot(/2-)=tan

  sin(/2+)=cos

  cos(/2+)=-sin

  tan(/2+)=-cot

  cot(/2+)=-tan

  sin()=sin

  cos()=-cos

  tan()=-tan

  cot()=-cot

  sin()=-sin

  cos()=-cos

  tan()=tan

  cot()=cot

  sin(3/2-)=-cos

  cos(3/2-)=-sin

  tan(3/2-)=cot

  cot(3/2-)=tan

  sin(3/2+)=-cos

  cos(3/2+)=sin

  tan(3/2+)=-cot

  cot(3/2+)=-tan

  sin(2)=-sin

  cos(2)=cos

  tan(2)=-tan

  cot(2)=-cot

  sin(2k)=sin

  cos(2k)=cos

  tan(2k)=tan

  cot(2k)=cot

  sin(+)=sincos+cossin

  sin(-)=sincos-cossin

  cos(+)=coscos-sinsin

  cos(-)=coscos+sinsin

  tan+tan

  tan(+)=

  1-tan tan

  tan-tan

  tan(-)=

  1+tan tan

  2tan(/2)

  sin=

  1+tan2(/2)

  1-tan2(/2)

  cos=

  1+tan2(/2)

  2tan(/2)

  tan=

  1-tan2(/2)

  sin2=2sincos

  cos2=cos2-sin2=2cos2-1=1-2sin2

  2tan

  tan2=

  1-tan2

  sin3=3sin-4sin3

  cos3=4cos3-3cos

  3tan-tan3

  tan3=

  1-3tan2

  倍角公式

  二倍角公式

  正弦形式:sin2α=2sinαcosα

  正切形式:tan2α=2tanα/(1-tan^2(α))

  余弦形式:cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

  三倍角公式

  sin3α=4sinα·sin(π/3+α)sin(π/3-α)

  cos3α=4cosα·cos(π/3+α)cos(π/3-α)

  tan3a=tana·tan(π/3+a)·tan(π/3-a)

  四倍角公式

  sin4A=-4*(cosA*sinA*(2*sinA^2-1))

  cos4A=1+(-8*cosA^2+8*cosA^4)

  tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)

  半角公式

  正弦

  sin(A/2)=√((1-cosA)/2)

  sin(A/2)=-√((1-cosA)/2)

  余弦

  cos(A/2)=√((1+cosA)/2)

  cos(A/2)=-√((1+cosA)/2)

  正切

  tan(A/2)=√((1-cosA)/((1+cosA))

  tan(A/2)=-√((1-cosA)/((1+cosA))

  積化和差

  sina*cosb=[sin(a+b)+sin(a-b)]/2

  cosa*sinb=[sin(a+b)-sin(a-b)]/2

  cosa*cosb=[cos(a+b)+cos(a-b)]/2

  sina*sinb=[cos(a-b)-cos(a+b)]/2

  和差化積

  sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]

  sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]

  cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]

  cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]

  誘導公式

  任意角α與-α的三角函數(shù)值之間的關(guān)系:

  sin(-α)=-sinα

  cos(-α)=cosα

  tan(-α)=-tanα

  cot(-α)=-cotα

  設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:

  sin(π+α)=-sinα

  cos(π+α)=-cosα

  tan(π+α)=tanα

  cot(π+α)=cotα

  利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:

  sin(π-α)=sinα

  cos(π-α)=-cosα

  tan(π-α)=-tanα

  cot(π-α)=-cotα

  設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:

  sin(2kπ+α)=sinα(k∈Z)

  cos(2kπ+α)=cosα(k∈Z)

  tan(2kπ+α)=tanα(k∈Z)

  cot(2kπ+α)=cotα(k∈Z)

  利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:

  sin(2π-α)=-sinα

  cos(2π-α)=cosα

  tan(2π-α)=-tanα

  cot(2π-α)=-cotα

  π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:

  sin(π/2+α)=cosα

  cos(π/2+α)=-sinα

  tan(π/2+α)=-cotα

  cot(π/2+α)=-tanα

  sin(π/2-α)=cosα

  cos(π/2-α)=sinα

  tan(π/2-α)=cotα

  cot(π/2-α)=tanα

  sin(3π/2+α)=-cosα

  cos(3π/2+α)=sinα

  tan(3π/2+α)=-cotα

  cot(3π/2+α)=-tanα

  sin(3π/2-α)=-cosα

  cos(3π/2-α)=-sinα

  tan(3π/2-α)=cotα

  cot(3π/2-α)=tanα

  (以上k∈Z)

  拓展閱讀:三角函數(shù)常用知識點

  1、勾股定理:直角三角形兩直角邊a、b的平方和等于斜邊c的平方。

  2、在Rt△ABC中,∠C為直角,則∠A的銳角三角函數(shù)為(∠A可換成∠B)

  3、任意銳角的正弦值等于它的余角的余弦值;任意銳角的余弦值等于它的余角的正弦值。

  4、任意銳角的正切值等于它的余角的余切值;任意銳角的余切值等于它的余角的正切值。

  5、正弦、余弦的增減性:當0°≤α≤90°時,sinα隨α的增大而增大,cosα隨α的增大而減小。

  6、正切、余切的增減性:當0°<α<90°時,tanα隨α的增大而增大,cotα隨α的增大而減小。

【三角函數(shù)公式】相關(guān)文章:

感悟人生:人生的公式12-30

excel表格公式大全03-04

小學數(shù)學公式總結(jié)02-08

稅金及附加的公式是什么02-25

excel快速下拉公式的教程04-21

Excel表格公式的使用教程11-10

個稅匯算清繳公式03-01

生育津貼計算公式是怎樣的01-22

稅額計算公式是什么04-13

等額本息貸款計算公式07-26