久久久久无码精品,四川省少妇一级毛片,老老熟妇xxxxhd,人妻无码少妇一区二区

高一數(shù)列知識(shí)點(diǎn)總結(jié)

時(shí)間:2024-08-16 17:16:28 興亮 學(xué)習(xí)總結(jié) 我要投稿
  • 相關(guān)推薦

高一數(shù)列知識(shí)點(diǎn)總結(jié)

  在日常過程學(xué)習(xí)中,不管我們學(xué)什么,都需要掌握一些知識(shí)點(diǎn),知識(shí)點(diǎn)是指某個(gè)模塊知識(shí)的重點(diǎn)、核心內(nèi)容、關(guān)鍵部分。為了幫助大家更高效的學(xué)習(xí),下面是小編為大家整理的高一數(shù)列知識(shí)點(diǎn)總結(jié),僅供參考,大家一起來看看吧。

高一數(shù)列知識(shí)點(diǎn)總結(jié)

  等差數(shù)列公式

  等差數(shù)列的通項(xiàng)公式為:an=a1+(n-1)d

  或an=am+(n-m)d

  前n項(xiàng)和公式為:Sn=na1+[n(n-1)/2] d或sn=(a1+an)n/2

  若m+n=2p則:am+an=2ap

  以上n均為正整數(shù)

  第n項(xiàng)的值=首項(xiàng)+(項(xiàng)數(shù)-1)*公差

  前n項(xiàng)的和=(首項(xiàng)+末項(xiàng))*項(xiàng)數(shù)/2

  公差=后項(xiàng)-前項(xiàng)

  等比數(shù)列公式

  等比數(shù)列求和公式

  (1) 等比數(shù)列:a (n+1)/an=q (n∈N)。

  (2) 通項(xiàng)公式:an=a1×q^(n-1); 推廣式:an=am×q^(n-m);

  (3) 求和公式:Sn=n×a1 (q=1) Sn=a1(1-q^n)/(1-q) =(a1-an×q)/(1-q) (q≠1) (q為公比,n為項(xiàng)數(shù))

  (4)性質(zhì):

 、偃 m、n、p、q∈N,且m+n=p+q,則am×an=ap×aq;

 、谠诘缺葦(shù)列中,依次每 k項(xiàng)之和仍成等比數(shù)列.

  ③若m、n、q∈N,且m+n=2q,則am×an=aq^2

  (5)"G是a、b的等比中項(xiàng)""G^2=ab(G ≠ 0)".

  (6)在等比數(shù)列中,首項(xiàng)a1與公比q都不為零. 注意:上述公式中an表示等比數(shù)列的第n項(xiàng)。

  等比數(shù)列求和公式推導(dǎo): Sn=a1+a2+a3+...+an(公比為q) q*Sn=a1*q+a2*q+a3*q+...+an*q =a2+a3+a4+...+a(n+1) Sn-q*Sn=a1-a(n+1) (1-q)Sn=a1-a1*q^n Sn=(a1-a1*q^n)/(1-q) Sn=(a1-an*q)/(1-q) Sn=a1(1-q^n)/(1-q) Sn=k*(1-q^n)~y=k*(1-a^x)。

  高二數(shù)學(xué)數(shù)列知識(shí)點(diǎn)數(shù)列概念

  ①數(shù)列是一種特殊的函數(shù)。其特殊性主要表現(xiàn)在其定義域和值域上。數(shù)列可以看作一個(gè)定義域?yàn)檎麛?shù)集N或其有限子集{1,2,3,…,n}的函數(shù),其中的{1,2,3,…,n}不能省略。

 、谟煤瘮(shù)的觀點(diǎn)認(rèn)識(shí)數(shù)列是重要的思想方法,一般情況下函數(shù)有三種表示方法,數(shù)列也不例外,通常也有三種表示方法:a.列表法;b。圖像法;c.解析法。其中解析法包括以通項(xiàng)公式給出數(shù)列和以遞推公式給出數(shù)列。

 、酆瘮(shù)不一定有解析式,同樣數(shù)列也并非都有通項(xiàng)公式。

  點(diǎn)擊查看:高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

  等差數(shù)列

  1.等差數(shù)列通項(xiàng)公式

  an=a1+(n-1)d

  n=1時(shí)a1=S1

  n≥2時(shí)an=Sn-Sn-1

  an=kn+b(k,b為常數(shù))推導(dǎo)過程:an=dn+a1-d令d=k,a1-d=b則得到an=kn+b

  2.等差中項(xiàng)

  由三個(gè)數(shù)a,A,b組成的等差數(shù)列可以堪稱最簡單的等差數(shù)列。這時(shí),A叫做a與b的等差中項(xiàng)(arithmeticmean)。

  有關(guān)系:A=(a+b)÷2

  3.前n項(xiàng)和

  倒序相加法推導(dǎo)前n項(xiàng)和公式:

  Sn=a1+a2+a3+·····+an

  =a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①

  Sn=an+an-1+an-2+······+a1

  =an+(an-d)+(an-2d)+······+[an-(n-1)d]②

  由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n個(gè))=n(a1+an)

  ∴Sn=n(a1+an)÷2

  等差數(shù)列的前n項(xiàng)和等于首末兩項(xiàng)的和與項(xiàng)數(shù)乘積的一半:

  Sn=n(a1+an)÷2=na1+n(n-1)d÷2

  Sn=dn2÷2+n(a1-d÷2)

  亦可得

  a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n

  an=2sn÷n-a1

  有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1

  等差數(shù)列性質(zhì)

  一、任意兩項(xiàng)am,an的關(guān)系為:

  an=am+(n-m)d

  它可以看作等差數(shù)列廣義的通項(xiàng)公式。

  二、從等差數(shù)列的定義、通項(xiàng)公式,前n項(xiàng)和公式還可推出:

  a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N

  三、若m,n,p,q∈N,且m+n=p+q,則有am+an=ap+aq

  四、對任意的k∈N,有

  Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差數(shù)列。

  等比數(shù)列

  1.等比中項(xiàng)

  如果在a與b中間插入一個(gè)數(shù)G,使a,G,b成等比數(shù)列,那么G叫做a與b的等比中項(xiàng)。

  有關(guān)系:

  注:兩個(gè)非零同號(hào)的實(shí)數(shù)的等比中項(xiàng)有兩個(gè),它們互為相反數(shù),所以G2=ab是a,G,b三數(shù)成等比數(shù)列的必要不充分條件。

  2.等比數(shù)列通項(xiàng)公式

  an=a1q’(n-1)(其中首項(xiàng)是a1,公比是q)

  an=Sn-S(n-1)(n≥2)

  前n項(xiàng)和

  當(dāng)q≠1時(shí),等比數(shù)列的前n項(xiàng)和的公式為

  Sn=a1(1-q’n)/(1-q)=(a1-a1q’n)/(1-q)(q≠1)

  當(dāng)q=1時(shí),等比數(shù)列的前n項(xiàng)和的公式為

  Sn=na1

  3.等比數(shù)列前n項(xiàng)和與通項(xiàng)的關(guān)系

  an=a1=s1(n=1)

  an=sn-s(n-1)(n≥2)

  4.等比數(shù)列性質(zhì)

  (1)若m、n、p、q∈N,且m+n=p+q,則am·an=ap·aq;

  (2)在等比數(shù)列中,依次每k項(xiàng)之和仍成等比數(shù)列。

  (3)從等比數(shù)列的定義、通項(xiàng)公式、前n項(xiàng)和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

  (4)等比中項(xiàng):q、r、p成等比數(shù)列,則aq·ap=ar2,ar則為ap,aq等比中項(xiàng)。

  記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

  另外,一個(gè)各項(xiàng)均為正數(shù)的等比數(shù)列各項(xiàng)取同底指數(shù)冪后構(gòu)成一個(gè)等差數(shù)列;反之,以任一個(gè)正數(shù)C為底,用一個(gè)等差數(shù)列的各項(xiàng)做指數(shù)構(gòu)造冪Can,則是等比數(shù)列。在這個(gè)意義下,我們說:一個(gè)正項(xiàng)等比數(shù)列與等差數(shù)列是“同構(gòu)”的。

  (5)等比數(shù)列前n項(xiàng)之和Sn=a1(1-q’n)/(1-q)

  (6)任意兩項(xiàng)am,an的關(guān)系為an=am·q’(n-m)

  (7)在等比數(shù)列中,首項(xiàng)a1與公比q都不為零。

  注意:上述公式中a’n表示a的n次方。

【高一數(shù)列知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

高中數(shù)學(xué)數(shù)列知識(shí)點(diǎn)總結(jié)05-25

小升初數(shù)列求和的相關(guān)知識(shí)點(diǎn)08-12

小升初數(shù)學(xué)數(shù)列求和知識(shí)點(diǎn)06-18

《數(shù)列求和》小升初數(shù)學(xué)知識(shí)點(diǎn)08-16

關(guān)于小升初數(shù)列求和知識(shí)點(diǎn)匯總09-20

小升初數(shù)學(xué)數(shù)列求和知識(shí)點(diǎn)歸納09-13

小升初奧數(shù)知識(shí)點(diǎn)數(shù)列求和的解析08-08

小升初奧數(shù)數(shù)列求和知識(shí)點(diǎn)整理08-15

最新小升初數(shù)學(xué)數(shù)列求和知識(shí)點(diǎn)大全08-18